Spatiotemporal Feature Enhancement Network for Blur Robust Underwater Object Detection

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Cognitive and Developmental Systems Pub Date : 2024-04-12 DOI:10.1109/TCDS.2024.3386664
Hao Zhou;Lu Qi;Hai Huang;Xu Yang;Jing Yang
{"title":"Spatiotemporal Feature Enhancement Network for Blur Robust Underwater Object Detection","authors":"Hao Zhou;Lu Qi;Hai Huang;Xu Yang;Jing Yang","doi":"10.1109/TCDS.2024.3386664","DOIUrl":null,"url":null,"abstract":"Underwater object detection is challenged by the presence of image blur induced by light absorption and scattering, resulting in substantial performance degradation. It is hypothesized that the attenuation of light is directly correlated with the camera-to-object distance, manifesting as variable degrees of image blur across different regions within underwater images. Specifically, regions in close proximity to the camera exhibit less pronounced blur compared to distant regions. Within the same object category, objects situated in clear regions share similar feature embeddings with their counterparts in blurred regions. This observation underscores the potential for leveraging objects in clear regions to aid in the detection of objects within blurred areas, a critical requirement for autonomous agents, such as autonomous underwater vehicles, engaged in continuous underwater object detection. Motivated by this insight, we introduce the spatiotemporal feature enhancement network (STFEN), a novel framework engineered to autonomously extract discriminative features from objects in clear regions. These features are then harnessed to enhance the representations of objects in blurred regions, operating across both spatial and temporal dimensions. Notably, the proposed STFEN seamlessly integrates into two-stage detectors, such as the faster region-based convolutional neural networks (Faster R-CNN) and feature pyramid networks (FPN). Extensive experimentation conducted on two benchmark underwater datasets, URPC 2018 and URPC 2019, conclusively demonstrates the efficacy of the STFEN framework. It delivers substantial enhancements in performance relative to baseline methods, yielding improvements in the mAP evaluation metric ranging from 3.7% to 5.0%.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 5","pages":"1814-1828"},"PeriodicalIF":5.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10498101/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater object detection is challenged by the presence of image blur induced by light absorption and scattering, resulting in substantial performance degradation. It is hypothesized that the attenuation of light is directly correlated with the camera-to-object distance, manifesting as variable degrees of image blur across different regions within underwater images. Specifically, regions in close proximity to the camera exhibit less pronounced blur compared to distant regions. Within the same object category, objects situated in clear regions share similar feature embeddings with their counterparts in blurred regions. This observation underscores the potential for leveraging objects in clear regions to aid in the detection of objects within blurred areas, a critical requirement for autonomous agents, such as autonomous underwater vehicles, engaged in continuous underwater object detection. Motivated by this insight, we introduce the spatiotemporal feature enhancement network (STFEN), a novel framework engineered to autonomously extract discriminative features from objects in clear regions. These features are then harnessed to enhance the representations of objects in blurred regions, operating across both spatial and temporal dimensions. Notably, the proposed STFEN seamlessly integrates into two-stage detectors, such as the faster region-based convolutional neural networks (Faster R-CNN) and feature pyramid networks (FPN). Extensive experimentation conducted on two benchmark underwater datasets, URPC 2018 and URPC 2019, conclusively demonstrates the efficacy of the STFEN framework. It delivers substantial enhancements in performance relative to baseline methods, yielding improvements in the mAP evaluation metric ranging from 3.7% to 5.0%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于模糊鲁棒水下物体检测的时空特征增强网络
水下物体检测面临着光吸收和散射引起的图像模糊的挑战,导致性能大幅下降。据推测,光的衰减与摄像机到物体的距离直接相关,在水下图像的不同区域表现为不同程度的图像模糊。具体来说,与远处的区域相比,与摄像机距离较近的区域表现出的模糊程度较轻。在同一物体类别中,位于清晰区域的物体与位于模糊区域的物体具有相似的特征嵌入。这一观察结果凸显了利用清晰区域内的物体来帮助检测模糊区域内物体的潜力,而这正是自主代理(如自主水下航行器)进行连续水下物体检测的关键要求。受此启发,我们引入了时空特征增强网络(STFEN),这是一个新颖的框架,旨在自主地从清晰区域的物体中提取辨别特征。然后利用这些特征来增强模糊区域中物体的表征,并在空间和时间维度上进行操作。值得注意的是,所提出的 STFEN 可以无缝集成到两级检测器中,如更快的基于区域的卷积神经网络(Faster R-CNN)和特征金字塔网络(FPN)。在两个基准水下数据集(URPC 2018 和 URPC 2019)上进行的广泛实验最终证明了 STFEN 框架的功效。与基线方法相比,它的性能有了大幅提升,在 mAP 评估指标上取得了 3.7% 到 5.0% 的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
10.00%
发文量
170
期刊介绍: The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.
期刊最新文献
Table of Contents IEEE Transactions on Cognitive and Developmental Systems Publication Information IEEE Transactions on Cognitive and Developmental Systems Information for Authors Guest Editorial: Special Issue on Advancing Machine Intelligence With Neuromorphic Computing IEEE Computational Intelligence Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1