Quantifying drought-driven temperature impacts on ozone disinfection credit and bromate control†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Science: Water Research & Technology Pub Date : 2024-04-05 DOI:10.1039/D4EW00042K
Bilal Abada, Ariel J. Atkinson and Eric C. Wert
{"title":"Quantifying drought-driven temperature impacts on ozone disinfection credit and bromate control†","authors":"Bilal Abada, Ariel J. Atkinson and Eric C. Wert","doi":"10.1039/D4EW00042K","DOIUrl":null,"url":null,"abstract":"<p >Climate change and drought can lead to unprecedented changes in surface water temperature requiring utilities to examine their ozone system's disinfection capability while minimizing bromate production. This pilot-scale study investigated temperature (15–30 °C) as a single/isolated variable affecting ozone operating performance (demand, decay rate, exposure (CT)) and the ability to achieve a <em>Cryptosporidium</em> log reduction value (LRV) of 0.5–1.5 logs, as defined by the United States Environmental Protection Agency (USEPA). When dosing 3.0 mg L<small><sup>−1</sup></small> of ozone into a surface water with 2.5 mg L<small><sup>−1</sup></small> of total organic carbon, an increase in temperature from 15 °C to 30 °C increased ozone demand in the dissolution zone from 1.0 mg L<small><sup>−1</sup></small> to 1.6 mg L<small><sup>−1</sup></small> (60%) and ozone decay rate from 0.07 min<small><sup>−1</sup></small> to 0.27 min<small><sup>−1</sup></small> (385%). Despite more rapid demand/decay, the required ozone dose to achieve an LRV of 1.5 logs remained at 2.4–2.8 mg L<small><sup>−1</sup></small> due to the reduction in USEPA's CT requirement at higher temperatures (9.35 mg min L<small><sup>−1</sup></small> at 15 °C <em>vs.</em> 2.31 mg min L<small><sup>−1</sup></small> at 30 °C). Bromate formation exceeded the USEPA maximum contaminant level of 10 μg L<small><sup>−1</sup></small> when ozone was dosed to achieve LRV &gt; 0.5 log at all temperature conditions. Chlorine–ammonium pretreatment (0.5 mg L<small><sup>−1</sup></small> Cl<small><sub>2</sub></small>, 0.1–0.5 mg L<small><sup>−1</sup></small> NH<small><sub>4</sub></small><small><sup>+</sup></small>-N) lowered bromate formation to &lt;5 μg L<small><sup>−1</sup></small> under ambient (80 μg L<small><sup>−1</sup></small>) and elevated (120 μg L<small><sup>−1</sup></small>) bromide concentrations at all temperatures. These results were applied to evaluate a full-scale ozone system designed to achieve an LRV of 1.5 logs if drought increases temperature from 13 °C to 26 °C. The study systematically examined the role of temperature on ozone system performance, which can assist utilities planning for future drought-driven changes.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00042k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00042k","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change and drought can lead to unprecedented changes in surface water temperature requiring utilities to examine their ozone system's disinfection capability while minimizing bromate production. This pilot-scale study investigated temperature (15–30 °C) as a single/isolated variable affecting ozone operating performance (demand, decay rate, exposure (CT)) and the ability to achieve a Cryptosporidium log reduction value (LRV) of 0.5–1.5 logs, as defined by the United States Environmental Protection Agency (USEPA). When dosing 3.0 mg L−1 of ozone into a surface water with 2.5 mg L−1 of total organic carbon, an increase in temperature from 15 °C to 30 °C increased ozone demand in the dissolution zone from 1.0 mg L−1 to 1.6 mg L−1 (60%) and ozone decay rate from 0.07 min−1 to 0.27 min−1 (385%). Despite more rapid demand/decay, the required ozone dose to achieve an LRV of 1.5 logs remained at 2.4–2.8 mg L−1 due to the reduction in USEPA's CT requirement at higher temperatures (9.35 mg min L−1 at 15 °C vs. 2.31 mg min L−1 at 30 °C). Bromate formation exceeded the USEPA maximum contaminant level of 10 μg L−1 when ozone was dosed to achieve LRV > 0.5 log at all temperature conditions. Chlorine–ammonium pretreatment (0.5 mg L−1 Cl2, 0.1–0.5 mg L−1 NH4+-N) lowered bromate formation to <5 μg L−1 under ambient (80 μg L−1) and elevated (120 μg L−1) bromide concentrations at all temperatures. These results were applied to evaluate a full-scale ozone system designed to achieve an LRV of 1.5 logs if drought increases temperature from 13 °C to 26 °C. The study systematically examined the role of temperature on ozone system performance, which can assist utilities planning for future drought-driven changes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量化干旱导致的温度对臭氧消毒信用和溴酸盐控制的影响
气候变化和干旱会导致地表水温度发生前所未有的变化,这就要求公用事业部门在尽量减少溴酸盐产生的同时,检查臭氧系统的消毒能力。这项中试规模的研究将温度(15-30 °C)作为一个单一/独立的变量,对臭氧的运行性能(需求、衰减率、暴露(CT))以及实现美国环境保护局(USEPA)规定的 0.5-1.5 logs 的隐孢子虫对数减少值(LRV)的能力产生影响。向总有机碳含量为 2.5 毫克/升的地表水中添加 3.0 毫克/升的臭氧时,温度从 15 °C 升至 30 °C,溶解区的臭氧需求量从 1.0 毫克/升增至 1.6 毫克/升(60%),臭氧衰减率从 0.07 分钟/升增至 0.27 分钟/升(385%)。尽管需求/衰减速度更快,但实现 1.5 logs LRV 所需的臭氧剂量仍为 2.4-2.8 mg L-1,这是因为美国环保局的 CT 要求在较高温度下有所降低(15 °C 时为 9.35 mg min L-1 而 30 °C 时为 2.31 mg min L-1)。在所有温度条件下,当臭氧用量达到 LRV > 0.5 log 时,溴酸盐的形成超过了美国环保局规定的 10 μg L-1 的最大污染物含量。氯铵预处理(0.5 mg L-1 Cl2、0.1-0.5 mg L-1 NH4+-N)降低了溴酸盐的形成,在所有温度条件下,在环境(80 μg L-1)和升高(120 μg L-1)的溴化物浓度下,溴酸盐的形成均为 <5 μg L-1。这些结果被用于评估一个全面的臭氧系统,该系统的设计目的是在干旱将温度从 13 °C 提高到 26 °C 的情况下实现 1.5 logs 的 LRV。该研究系统地考察了温度对臭氧系统性能的影响,这有助于公用事业部门规划未来干旱引起的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
期刊最新文献
Back cover A comprehensive study on the physicochemical characteristics of faecal sludge from Septic Tanks and Single Pit Latrines facilities in a typical semi-urban Indian town: A Case Study of Rajasthan, India Lead ions (Pb2+) Electrochemical Sensors Based on Novel Schiff Base Ligands Concurrent Boron Removal from Reverse Osmosis Concentrated and Energy Production using Microbial Desalination Cell-Donnan Dialysis Hybrid System Investigation of the effect of Al2O3/water nanofluid on the performance of a thermoelectric cooler to harvest water from humid air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1