Molten multi-phase catalytic system comprising Li–Zn alloy and LiCl–KCl salt for nitrogen fixation and ammonia synthesis at ambient pressure†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-06-17 DOI:10.1039/d4cy00202d
Xian Meng , Jian Liu , Zujian Tang , Bingxu Xi , Pu Yan , Xingran Wang , Kecheng Cao , Bo Yang , Xiaofei Guan
{"title":"Molten multi-phase catalytic system comprising Li–Zn alloy and LiCl–KCl salt for nitrogen fixation and ammonia synthesis at ambient pressure†","authors":"Xian Meng ,&nbsp;Jian Liu ,&nbsp;Zujian Tang ,&nbsp;Bingxu Xi ,&nbsp;Pu Yan ,&nbsp;Xingran Wang ,&nbsp;Kecheng Cao ,&nbsp;Bo Yang ,&nbsp;Xiaofei Guan","doi":"10.1039/d4cy00202d","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) is one of the most important synthetic inorganic commodities. The current industrial NH<sub>3</sub> production is dominated by the Haber–Bosch process with high energy cost and CO<sub>2</sub> emission as well as the need for large-scale centralized operation. Liquid metals and molten salts have recently emerged as promising catalytic materials for NH<sub>3</sub> synthesis. Herein, we present a molten system comprising Li–Zn alloy and eutectic LiCl–KCl salt for effective NH<sub>3</sub> synthesis at 400 °C and 1 bar. The 70 mol% Li–Zn liquid alloy activates N<sub>2</sub> dissociation more easily than the pure liquid Zn and the 60 mol% Li–Sn liquid alloy. Effective N<sub>2</sub> fixation by the liquid Li–Zn alloy is followed by the hydrogenation of Li<sub>3</sub>N dissolved in the molten salt above. For the first time, this work reports a volcano-type relationship between the Li<sub>3</sub>N concentration in the molten salt and the NH<sub>3</sub> synthesis rate when feeding H<sub>2</sub> to the molten salt. <em>Ab initio</em> molecular dynamics simulations suggest that, within this system, both N<sub>2</sub> cleavage and Li<sub>3</sub>N hydrogenation are quite reactive. Through combined experiments and simulations, this work unravels the molecular mechanisms of nitrogen fixation and ammonia synthesis in the liquid alloy–salt catalytic system, and also demonstrates effective strategies for improving the ammonia synthesis rate. Such a hybrid molten catalytic system offers a promising solution for distributed NH<sub>3</sub> production with low energy cost and CO<sub>2</sub> emission.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324002971","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia (NH3) is one of the most important synthetic inorganic commodities. The current industrial NH3 production is dominated by the Haber–Bosch process with high energy cost and CO2 emission as well as the need for large-scale centralized operation. Liquid metals and molten salts have recently emerged as promising catalytic materials for NH3 synthesis. Herein, we present a molten system comprising Li–Zn alloy and eutectic LiCl–KCl salt for effective NH3 synthesis at 400 °C and 1 bar. The 70 mol% Li–Zn liquid alloy activates N2 dissociation more easily than the pure liquid Zn and the 60 mol% Li–Sn liquid alloy. Effective N2 fixation by the liquid Li–Zn alloy is followed by the hydrogenation of Li3N dissolved in the molten salt above. For the first time, this work reports a volcano-type relationship between the Li3N concentration in the molten salt and the NH3 synthesis rate when feeding H2 to the molten salt. Ab initio molecular dynamics simulations suggest that, within this system, both N2 cleavage and Li3N hydrogenation are quite reactive. Through combined experiments and simulations, this work unravels the molecular mechanisms of nitrogen fixation and ammonia synthesis in the liquid alloy–salt catalytic system, and also demonstrates effective strategies for improving the ammonia synthesis rate. Such a hybrid molten catalytic system offers a promising solution for distributed NH3 production with low energy cost and CO2 emission.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由锂锌合金和锂盐-氯化钾组成的熔融多相催化系统,用于在常压下固氮和合成氨
氨(NH3)是最重要的无机合成商品之一。目前的工业 NH3 生产主要采用哈伯-博施工艺,该工艺能耗高、二氧化碳排放量大,而且需要大规模集中操作。最近,液态金属和熔盐已成为合成 NH3 的有前途的催化材料。在此,我们介绍了一种由锂锌合金和共晶锂盐组成的熔融系统,可在 400 °C 和 1 bar 条件下有效合成 NH3。70 摩尔%的锂锌液态合金比纯液态锌和 60 摩尔%的锂硒液态合金更容易激活 N2 解离。液态锂锌合金有效固定 N2 之后,溶解在上述熔盐中的 Li3N 会发生氢化反应。这项研究首次报告了向熔盐中注入 H2 时,熔盐中 Li3N 浓度与 NH3 合成率之间的火山型关系。Ab initio 分子动力学模拟表明,在该体系中,N2 裂解和 Li3N 加氢反应都非常活跃。通过实验和模拟相结合的方法,这项研究揭示了液态合金-盐催化体系中固氮和氨合成的分子机理,并展示了提高氨合成率的有效策略。这种混合熔融催化系统为低能耗、低二氧化碳排放的分布式 NH3 生产提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Inside back cover Outstanding Reviewers for Catalysis Science & Technology in 2023 Thermostable fatty acid hydroxylases from ancestral reconstruction of cytochrome P450 family 4 enzymes Catalytic processes for the selective hydrogenation of fats and oils: reevaluating a mature technology for feedstock diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1