{"title":"On the Transport of Currents","authors":"Paolo Bonicatto","doi":"10.1007/s00032-024-00394-9","DOIUrl":null,"url":null,"abstract":"<p>In this work, we consider some evolutionary models for <i>k</i>-currents in <span>\\(\\mathbb {R}^d\\)</span>. We study a transport-type equation which can be seen as a generalisation of the transport/continuity equation and can be used to model the movement of singular structures in a medium, such as vortex points/lines/sheets in fluids or dislocation loops in crystals. We provide a detailed overview of recent results on this equation obtained mostly in (Bonicatto et al. Transport of currents and geometric Rademacher-type theorems. arXiv:2207.03922, 2022; Bonicatto et al. Existence and uniqueness for the transport of currents by Lipschitz vector fields. arXiv:2303.03218, 2023). We work within the setting of integral (sometimes merely normal) <i>k</i>-currents, covering in particular existence and uniqueness of solutions, structure theorems, rectifiability, and a number of Rademacher-type differentiability results. These differentiability results are sharp and can be formulated in terms of a novel condition we called “Negligible Criticality condition” (NC), which turns out to be related also to Sard’s Theorem. We finally provide a new stability result for integral currents satisfying (NC) in a uniform way.</p>","PeriodicalId":49811,"journal":{"name":"Milan Journal of Mathematics","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milan Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-024-00394-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we consider some evolutionary models for k-currents in \(\mathbb {R}^d\). We study a transport-type equation which can be seen as a generalisation of the transport/continuity equation and can be used to model the movement of singular structures in a medium, such as vortex points/lines/sheets in fluids or dislocation loops in crystals. We provide a detailed overview of recent results on this equation obtained mostly in (Bonicatto et al. Transport of currents and geometric Rademacher-type theorems. arXiv:2207.03922, 2022; Bonicatto et al. Existence and uniqueness for the transport of currents by Lipschitz vector fields. arXiv:2303.03218, 2023). We work within the setting of integral (sometimes merely normal) k-currents, covering in particular existence and uniqueness of solutions, structure theorems, rectifiability, and a number of Rademacher-type differentiability results. These differentiability results are sharp and can be formulated in terms of a novel condition we called “Negligible Criticality condition” (NC), which turns out to be related also to Sard’s Theorem. We finally provide a new stability result for integral currents satisfying (NC) in a uniform way.
期刊介绍:
Milan Journal of Mathematics (MJM) publishes high quality articles from all areas of Mathematics and the Mathematical Sciences. The authors are invited to submit "articles with background", presenting a problem of current research with its history and its developments, the current state and possible future directions. The presentation should render the article of interest to a wider audience than just specialists.
Many of the articles will be "invited contributions" from speakers in the "Seminario Matematico e Fisico di Milano". However, also other authors are welcome to submit articles which are in line with the "Aims and Scope" of the journal.