A. A. Churkin, I. N. Lozovsky, G. V. Volodin, R. A. Zhostkov
{"title":"Evaluating the Integrity of Slab–Soil Contact with Impulse Response Testing: Insights from Numerical Simulations","authors":"A. A. Churkin, I. N. Lozovsky, G. V. Volodin, R. A. Zhostkov","doi":"10.1007/s11204-024-09944-0","DOIUrl":null,"url":null,"abstract":"<p>To assess the sensitivity of impulse response testing to potential poor support zones or voids beneath the foundation slabs, numerical simulations were performed using the finite element method. These simulations covered a range of scenarios, including soil-loosening zones, sub-slab cavities, and slab cracks. The analysis of the simulation results employed two distinct techniques: the normalized acoustic response method and the ASTM C1740 mobility spectrum approach. These methods allowed the parameters and attributes derived from changes in input signals to be described in relation to the specifications within the synthetic models.</p>","PeriodicalId":21918,"journal":{"name":"Soil Mechanics and Foundation Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Mechanics and Foundation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11204-024-09944-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To assess the sensitivity of impulse response testing to potential poor support zones or voids beneath the foundation slabs, numerical simulations were performed using the finite element method. These simulations covered a range of scenarios, including soil-loosening zones, sub-slab cavities, and slab cracks. The analysis of the simulation results employed two distinct techniques: the normalized acoustic response method and the ASTM C1740 mobility spectrum approach. These methods allowed the parameters and attributes derived from changes in input signals to be described in relation to the specifications within the synthetic models.
期刊介绍:
Soil Mechanics and Foundation Engineering provides the Western engineer with a look at Russian advances in heavy construction techniques. Detailed contributions by experienced civil engineers offer insights into current difficulties in the field, applicable innovative solutions, and recently developed guidelines for soil analysis and foundation design.