Arif Ali Khan, Muhammad Azeem Akbar, Valtteri Lahtinen, Marko Paavola, Mahmood Niazi, Mohammed Naif Alatawi, Shoayee Dlaim Alotaibi
{"title":"Agile meets quantum: a novel genetic algorithm model for predicting the success of quantum software development project","authors":"Arif Ali Khan, Muhammad Azeem Akbar, Valtteri Lahtinen, Marko Paavola, Mahmood Niazi, Mohammed Naif Alatawi, Shoayee Dlaim Alotaibi","doi":"10.1007/s10515-024-00434-z","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum software systems represent a new realm in software engineering, utilizing quantum bits (Qubits) and quantum gates (Qgates) to solve the complex problems more efficiently than classical counterparts. Agile software development approaches are considered to address many inherent challenges in quantum software development, but their effective integration remains unexplored. This study investigates key causes of challenges that could hinders the adoption of traditional agile approaches in quantum software projects and develop an Agile-Quantum Software Project Success Prediction Model (AQSSPM). Firstly, we identified 19 causes of challenging factors discussed in our previous study, which are potentially impacting agile-quantum project success. Secondly, a survey was conducted to collect expert opinions on these causes and applied Genetic Algorithm (GA) with Naive Bayes Classifier (NBC) and Logistic Regression (LR) to develop the AQSSPM. Utilizing GA with NBC, project success probability improved from 53.17 to 99.68%, with cost reductions from 0.463 to 0.403%. Similarly, GA with LR increased success rates from 55.52 to 98.99%, and costs decreased from 0.496 to 0.409% after 100 iterations. Both methods result showed a strong positive correlation (rs = 0.955) in causes ranking, with no significant difference between them (<i>t</i> = 1.195, <i>p</i> = 0.240 > 0.05). The AQSSPM highlights critical focus areas for efficiently and successfully implementing agile-quantum projects considering the cost factor of a particular project.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"31 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10515-024-00434-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-024-00434-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum software systems represent a new realm in software engineering, utilizing quantum bits (Qubits) and quantum gates (Qgates) to solve the complex problems more efficiently than classical counterparts. Agile software development approaches are considered to address many inherent challenges in quantum software development, but their effective integration remains unexplored. This study investigates key causes of challenges that could hinders the adoption of traditional agile approaches in quantum software projects and develop an Agile-Quantum Software Project Success Prediction Model (AQSSPM). Firstly, we identified 19 causes of challenging factors discussed in our previous study, which are potentially impacting agile-quantum project success. Secondly, a survey was conducted to collect expert opinions on these causes and applied Genetic Algorithm (GA) with Naive Bayes Classifier (NBC) and Logistic Regression (LR) to develop the AQSSPM. Utilizing GA with NBC, project success probability improved from 53.17 to 99.68%, with cost reductions from 0.463 to 0.403%. Similarly, GA with LR increased success rates from 55.52 to 98.99%, and costs decreased from 0.496 to 0.409% after 100 iterations. Both methods result showed a strong positive correlation (rs = 0.955) in causes ranking, with no significant difference between them (t = 1.195, p = 0.240 > 0.05). The AQSSPM highlights critical focus areas for efficiently and successfully implementing agile-quantum projects considering the cost factor of a particular project.
期刊介绍:
This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes.
Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.