Pb2+ adsorption on functionalized biochar nanoparticles: Insights from nanoparticle characterization and kinetic-isotherm analysis

Hedieh Behnam, Ahmad Farrokhian Firouzi, Jiří Šimůnek
{"title":"Pb2+ adsorption on functionalized biochar nanoparticles: Insights from nanoparticle characterization and kinetic-isotherm analysis","authors":"Hedieh Behnam,&nbsp;Ahmad Farrokhian Firouzi,&nbsp;Jiří Šimůnek","doi":"10.1002/saj2.20669","DOIUrl":null,"url":null,"abstract":"<p>There has been an ongoing discussion about whether using functionalized biochar nanoparticles for pollutant removal is practical. The existing uncertainty surrounding functionalized biochar nanoparticles raises questions regarding their effectiveness in unraveling this problem. In this study, functionalized biochar nanoparticles were produced from corn (<i>Zea mays</i> L.) residues and <i>Conocarpus erectus</i> L. wood at 400°C and 700°C using the H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub> treatment. The synthesized nanoparticles were used to explore their sorption properties for Pb<sup>2+</sup>. Various adsorption kinetic and isotherm models were evaluated using linear and nonlinear regression techniques. The functionalized biochar nanoparticles originated from wood at 400°C had the largest (80.74 mg g<sup>−1</sup>) Pb<sup>2+</sup> adsorption capacity due to their highest O/C and the most negative zeta potential. In comparison, nanoparticles fabricated from corn residues at 700°C showed the lowest (70.47 mg g<sup>−1</sup>) Pb<sup>2+</sup> adsorption capacity. Pyrolysis temperature affected the sorption process. Functionalized biochar nanoparticles produced at 400°C were more successful in sorbing the pollutant than those fabricated at 700°C. Linear and nonlinear pseudo-second-order kinetic models described Pb<sup>2+</sup> adsorption kinetics well, indicating the rate-controlling step. The nonlinear Freundlich model described the equilibrium relationship between adsorbate concentration and capacity, elucidating adsorption site heterogeneity and biochar nanoparticles' affinity for Pb<sup>2+</sup>. Our study shows that functionalized biochar nanoparticles could help develop procedures for remediating polluted environments.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/saj2.20669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There has been an ongoing discussion about whether using functionalized biochar nanoparticles for pollutant removal is practical. The existing uncertainty surrounding functionalized biochar nanoparticles raises questions regarding their effectiveness in unraveling this problem. In this study, functionalized biochar nanoparticles were produced from corn (Zea mays L.) residues and Conocarpus erectus L. wood at 400°C and 700°C using the H2SO4/HNO3 treatment. The synthesized nanoparticles were used to explore their sorption properties for Pb2+. Various adsorption kinetic and isotherm models were evaluated using linear and nonlinear regression techniques. The functionalized biochar nanoparticles originated from wood at 400°C had the largest (80.74 mg g−1) Pb2+ adsorption capacity due to their highest O/C and the most negative zeta potential. In comparison, nanoparticles fabricated from corn residues at 700°C showed the lowest (70.47 mg g−1) Pb2+ adsorption capacity. Pyrolysis temperature affected the sorption process. Functionalized biochar nanoparticles produced at 400°C were more successful in sorbing the pollutant than those fabricated at 700°C. Linear and nonlinear pseudo-second-order kinetic models described Pb2+ adsorption kinetics well, indicating the rate-controlling step. The nonlinear Freundlich model described the equilibrium relationship between adsorbate concentration and capacity, elucidating adsorption site heterogeneity and biochar nanoparticles' affinity for Pb2+. Our study shows that functionalized biochar nanoparticles could help develop procedures for remediating polluted environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能化生物炭纳米颗粒上的 Pb2+ 吸附:纳米颗粒表征和动力学等温线分析的启示
人们一直在讨论使用功能化生物炭纳米颗粒去除污染物是否可行。功能化生物炭纳米颗粒目前存在的不确定性使人们对其在解决这一问题方面的有效性产生了疑问。本研究采用 H2SO4/HNO3 处理法,在 400°C 和 700°C 温度下从玉米(Zea mays L.)残渣和直立芋(Conocarpus erectus L.)木材中制备了功能化生物炭纳米颗粒。利用合成的纳米颗粒探究其对 Pb2+ 的吸附特性。使用线性和非线性回归技术评估了各种吸附动力学和等温线模型。在 400°C 下,源自木材的功能化生物炭纳米颗粒具有最大(80.74 mg g-1)的 Pb2+ 吸附能力,这是因为它们具有最高的 O/C 值和最负的 zeta 电位。相比之下,在 700°C 高温下由玉米残渣制成的纳米颗粒的 Pb2+ 吸附能力最低(70.47 mg g-1)。热解温度影响了吸附过程。与在 700°C 下制备的纳米颗粒相比,在 400°C 下制备的功能化生物炭更能成功吸附污染物。线性和非线性伪二阶动力学模型很好地描述了 Pb2+ 吸附动力学,表明了速率控制步骤。非线性 Freundlich 模型描述了吸附剂浓度与吸附容量之间的平衡关系,阐明了吸附位点的异质性和生物炭纳米颗粒对 Pb2+ 的亲和力。我们的研究表明,功能化生物炭纳米颗粒有助于开发污染环境的修复程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Proceedings of the 14th North American Forest Soils Conference Soil chemical properties affecting grain yield and oil content of crambe biofuel crop Particulate organic carbon and nitrogen and soil-test biological activity under grazed pastures and conservation land uses Determining microbial metabolic limitation under the influence of moss patch size from soil extracellular enzyme stoichiometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1