Z. P. Uridiya, A. A. Leonov, N. V. Trofimov, E. M. Morozova
{"title":"Study of Structural-Phase Transformations and Kinetics of Decomposition of Supersaturated Solid Solution of Fire-Resistant Magnesium Alloy VML26","authors":"Z. P. Uridiya, A. A. Leonov, N. V. Trofimov, E. M. Morozova","doi":"10.1007/s11041-024-00988-5","DOIUrl":null,"url":null,"abstract":"<p>The results of a study of structural-phase transformations and kinetics of decomposition of supersaturated solid solution that occur during heat treatment (aging) of a new-generation magnesium alloy with an elevated ignition temperature are presented. The microstructure of the alloy in cast, quenched and aged states is studied. The physical and mechanical properties of magnesium alloy VML26 after aging at different temperatures and time parameters are determined. Dependence of the mechanical properties and hardness of alloy VML26 on the aging modes is established.</p>","PeriodicalId":701,"journal":{"name":"Metal Science and Heat Treatment","volume":"65 11-12","pages":"671 - 676"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science and Heat Treatment","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11041-024-00988-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The results of a study of structural-phase transformations and kinetics of decomposition of supersaturated solid solution that occur during heat treatment (aging) of a new-generation magnesium alloy with an elevated ignition temperature are presented. The microstructure of the alloy in cast, quenched and aged states is studied. The physical and mechanical properties of magnesium alloy VML26 after aging at different temperatures and time parameters are determined. Dependence of the mechanical properties and hardness of alloy VML26 on the aging modes is established.
期刊介绍:
Metal Science and Heat Treatment presents new fundamental and practical research in physical metallurgy, heat treatment equipment, and surface engineering.
Topics covered include:
New structural, high temperature, tool and precision steels;
Cold-resistant, corrosion-resistant and radiation-resistant steels;
Steels with rapid decline of induced properties;
Alloys with shape memory effect;
Bulk-amorphyzable metal alloys;
Microcrystalline alloys;
Nano materials and foam materials for medical use.