Friction in Rolling a Cylinder on or Under a Viscoelastic Substrate with Adhesion

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Tribology Letters Pub Date : 2024-04-07 DOI:10.1007/s11249-024-01849-1
R. Nazari, A. Papangelo, M. Ciavarella
{"title":"Friction in Rolling a Cylinder on or Under a Viscoelastic Substrate with Adhesion","authors":"R. Nazari,&nbsp;A. Papangelo,&nbsp;M. Ciavarella","doi":"10.1007/s11249-024-01849-1","DOIUrl":null,"url":null,"abstract":"<div><p>In classical experiments, it has been found that a rigid cylinder can roll both on and <i>under</i> an inclined rubber plane with a friction force that depends on a power law of velocity, independent of the sign of the normal force. Further, contact area increases significantly with velocity with a related power law. We try to model qualitatively these experiments with a numerical boundary element solution with a standard linear solid and we find for sufficiently large Maugis–Tabor parameter <span>\\(\\lambda\\)</span> qualitative agreement with experiments. However, friction force increases linearly with velocity at low velocities (like in the case with no adhesive hysteresis) and then decays at large speeds. Quantitative agreement with the Persson–Brener theory of crack propagation is found for the two power law regimes, but when Maugis–Tabor parameter <span>\\(\\lambda\\)</span> is small, the cut-off stress in Persson–Brener theory depends on all the other dimensionless parameters of the problem.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01849-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01849-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In classical experiments, it has been found that a rigid cylinder can roll both on and under an inclined rubber plane with a friction force that depends on a power law of velocity, independent of the sign of the normal force. Further, contact area increases significantly with velocity with a related power law. We try to model qualitatively these experiments with a numerical boundary element solution with a standard linear solid and we find for sufficiently large Maugis–Tabor parameter \(\lambda\) qualitative agreement with experiments. However, friction force increases linearly with velocity at low velocities (like in the case with no adhesive hysteresis) and then decays at large speeds. Quantitative agreement with the Persson–Brener theory of crack propagation is found for the two power law regimes, but when Maugis–Tabor parameter \(\lambda\) is small, the cut-off stress in Persson–Brener theory depends on all the other dimensionless parameters of the problem.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在粘性基底上或基底下滚动圆柱体时的摩擦力
在经典实验中发现,一个刚性圆柱体可以在倾斜橡胶平面上和下面滚动,其摩擦力取决于速度的幂律,与法向力的符号无关。此外,接触面积会随着速度的增加而显著增大,并呈现出相关的幂律。我们尝试用标准线性实体的数值边界元解法对这些实验进行定性建模,我们发现在足够大的 Maugis-Tabor 参数 \(\lambda\)条件下与实验的定性一致。然而,摩擦力在低速时随速度线性增加(如在无粘滞的情况下),然后在高速时衰减。在两种幂律状态下,与佩尔松-布雷纳裂纹扩展理论的定量一致,但是当莫吉斯-塔伯参数(\(\lambda\))较小时,佩尔松-布雷纳理论中的截止应力取决于问题的所有其他无量纲参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
期刊最新文献
Wear Mechanism and Wear Debris Characterization of ULWPE in Multidirectional Motion Cobalt- and Chromium-Oxide-Based Coatings: Thermally Spraying a Glaze Layer Visualization of Structural Deformation of Polymer Additives in Oil Under High Shear Flow Influence of Variable-Depth Groove Texture on the Friction and Wear Performance of GCr15–SiC Friction Pairs Under Water Lubrication The Flow of Lubricant as a Mist in the Piston Assembly and Crankcase of a Fired Gasoline Engine: The Effect of Viscosity Modifier and the Link to Lubricant Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1