Significance of shape factor on magnetohydrodynamic buoyancy thin film flow of nanofluid over inclined sheet with slip condition: Irreversibility analysis

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED Modern Physics Letters B Pub Date : 2024-04-05 DOI:10.1142/s0217984924503354
Zafar Mahmood, Khadija Rafique, Adnan, Umar Khan, Sidra Jubair, Fuad A. Awwad, Emad A. A. Ismail
{"title":"Significance of shape factor on magnetohydrodynamic buoyancy thin film flow of nanofluid over inclined sheet with slip condition: Irreversibility analysis","authors":"Zafar Mahmood, Khadija Rafique, Adnan, Umar Khan, Sidra Jubair, Fuad A. Awwad, Emad A. A. Ismail","doi":"10.1142/s0217984924503354","DOIUrl":null,"url":null,"abstract":"<p>This work aims to examine the entropy production, heat transport, and dynamics of the unsteady thin film magnetohydrodynamic (MHD) flow of a nanofluid composed of alumina (Al<sub>2</sub>O<sub>3</sub>) and water. The fluid flow is seen to pass over an inclined sheet, taking into account the effects of buoyancy force, viscous dissipation, and joule heating. The system of partial differential equations (PDEs) is optimized under the boundary layer assumptions. Appropriate transformations are used to convert the governing partial differential equations (PDEs) and boundary conditions into dimensionless forms. Using MATLAB’s bvp4c code and a local non-similarity technique with up to second-degree truncation, we can obtain the findings of the enhanced model. The effect of multi-shape Al<sub>2</sub>O<sub>3</sub> nanoparticles on flow, heat, and entropy-generating features is also investigated after the calculated results have been successfully aligned with published data. Mixed convection, nanoparticle volume percent, inclination angle, magnetic field intensity, mass suction, Eckert number, and Biot number are only a few of the governing parameters whose effects are graphically shown for selected values. As a result, the local Nusselt number and skin friction coefficient may be calculated. The skin friction and Nusselt number profiles exhibit a decreasing trend as the values of nanoparticle volume fraction (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span>) magnetic <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>M</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and unsteadiness (<i>A</i>) increase toward mixed convection (<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi></math></span><span></span>). On the other hand, Nusselt number profile increases with increasing values of mass suction parameter <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span> The profiles of entropy generation and Bejan number show an upsurge as the values of the magnetic parameter <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>M</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and Brinkman number (Br) increase. Conversely, the entropy generation reduces with an increase in the temperature difference parameter <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and Bejan number increases.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503354","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to examine the entropy production, heat transport, and dynamics of the unsteady thin film magnetohydrodynamic (MHD) flow of a nanofluid composed of alumina (Al2O3) and water. The fluid flow is seen to pass over an inclined sheet, taking into account the effects of buoyancy force, viscous dissipation, and joule heating. The system of partial differential equations (PDEs) is optimized under the boundary layer assumptions. Appropriate transformations are used to convert the governing partial differential equations (PDEs) and boundary conditions into dimensionless forms. Using MATLAB’s bvp4c code and a local non-similarity technique with up to second-degree truncation, we can obtain the findings of the enhanced model. The effect of multi-shape Al2O3 nanoparticles on flow, heat, and entropy-generating features is also investigated after the calculated results have been successfully aligned with published data. Mixed convection, nanoparticle volume percent, inclination angle, magnetic field intensity, mass suction, Eckert number, and Biot number are only a few of the governing parameters whose effects are graphically shown for selected values. As a result, the local Nusselt number and skin friction coefficient may be calculated. The skin friction and Nusselt number profiles exhibit a decreasing trend as the values of nanoparticle volume fraction (ϕ) magnetic (M) and unsteadiness (A) increase toward mixed convection (δ). On the other hand, Nusselt number profile increases with increasing values of mass suction parameter (S) The profiles of entropy generation and Bejan number show an upsurge as the values of the magnetic parameter (M) and Brinkman number (Br) increase. Conversely, the entropy generation reduces with an increase in the temperature difference parameter (Ω) and Bejan number increases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形状系数对具有滑移条件的倾斜板上纳米流体的磁流体动力浮力薄膜流的影响:不可逆分析
这项工作旨在研究由氧化铝(Al2O3)和水组成的纳米流体的非稳态薄膜磁流体动力(MHD)流动的熵产生、热传输和动力学。考虑到浮力、粘性耗散和焦耳热的影响,可以看到流体流经一个倾斜的薄片。在边界层假设条件下,对偏微分方程(PDE)系统进行了优化。使用适当的转换将支配偏微分方程 (PDE) 和边界条件转换为无量纲形式。使用 MATLAB 的 bvp4c 代码和局部非相似性技术(最多二级截断),我们可以获得增强模型的结果。在计算结果与已发表的数据成功对齐后,我们还研究了多形状 Al2O3 纳米粒子对流动、热量和熵产生特征的影响。混合对流、纳米颗粒体积百分比、倾角、磁场强度、质量吸力、埃克特数和比奥特数只是其中的几个控制参数,这些参数对选定值的影响以图表形式显示。因此,可以计算出局部努塞尔特数和表皮摩擦系数。随着纳米颗粒体积分数(ϕ)、磁性(M)和不稳定性(A)值的增加,皮肤摩擦系数和努塞尔特数曲线呈现出向混合对流(δ)递减的趋势。另一方面,随着质量吸力参数 (S) 值的增加,努塞尔特数曲线也会增加。相反,随着温差参数(Ω)的增加和贝扬数的增加,熵产生量减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
期刊最新文献
Enhanced magnetoresistance properties in La0.7−xSmxCa0.3MnO3 epitaxial films Synthesis of mulberry-like Fe nanoparticles assembly by nano-spheres and its excellent electromagnetic absorption properties Design of NiO–ZnCo2O4 heterostructures for room temperature H2S sensing Astrophysical expedition: Transit search heuristics for fractional Hammerstein control autoregressive models Investigation of electrolysis corrosion on marine propellers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1