{"title":"N6-Methyladenosine in Mammalian Messenger RNA: Function, Location, and Quantitation","authors":"Ruiqi Ge, Mengshu Emily He, Weixin Tang","doi":"10.1002/ijch.202300181","DOIUrl":null,"url":null,"abstract":"<p><i>N</i><sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most abundant internal modification in mammalian messenger RNA (mRNA), constituting 0.1 %–0.4 % of total adenosine residues in the transcriptome. m<sup>6</sup>A regulates mRNA stability and translation, pre-mRNA splicing, miRNA biogenesis, lncRNA binding, and many other physiological and pathological processes. While the majority of m<sup>6</sup>As occur in a consensus motif of DRm<sup>6</sup>ACH (D=A/G/U, R=A/G, H=U/A/C), the presence of such a motif does not guarantee methylation. Different RNA copies transcribed from the same gene may be methylated to varying levels. Within a single transcript, m<sup>6</sup>As are not evenly distributed, showing an enrichment in long internal and terminal exons. These characteristics of m<sup>6</sup>A deposition call for sequencing methods that not only pinpoint m<sup>6</sup>A sites at base resolution, but also quantitate the abundance of methylation across different RNA copies. In this review, we summarize existing m<sup>6</sup>A profiling methods, with an emphasis on next generation sequencing-(NGS−)based, site-specific, and quantitative methods, as well as several emerging single-cell methods.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 3-4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300181","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202300181","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in mammalian messenger RNA (mRNA), constituting 0.1 %–0.4 % of total adenosine residues in the transcriptome. m6A regulates mRNA stability and translation, pre-mRNA splicing, miRNA biogenesis, lncRNA binding, and many other physiological and pathological processes. While the majority of m6As occur in a consensus motif of DRm6ACH (D=A/G/U, R=A/G, H=U/A/C), the presence of such a motif does not guarantee methylation. Different RNA copies transcribed from the same gene may be methylated to varying levels. Within a single transcript, m6As are not evenly distributed, showing an enrichment in long internal and terminal exons. These characteristics of m6A deposition call for sequencing methods that not only pinpoint m6A sites at base resolution, but also quantitate the abundance of methylation across different RNA copies. In this review, we summarize existing m6A profiling methods, with an emphasis on next generation sequencing-(NGS−)based, site-specific, and quantitative methods, as well as several emerging single-cell methods.
期刊介绍:
The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry.
The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH.
The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.