{"title":"A two-phase thin-film model for cell-induced gel contraction incorporating osmotic effects","authors":"J. R. Reoch, Y. M. Stokes, J. E. F. Green","doi":"10.1007/s00285-024-02072-1","DOIUrl":null,"url":null,"abstract":"<p>We present a mathematical model of an experiment in which cells are cultured within a gel, which in turn floats freely within a liquid nutrient medium. Traction forces exerted by the cells on the gel cause it to contract over time, giving a measure of the strength of these forces. Building upon our previous work (Reoch et al. in J Math Biol 84(5):31, 2022), we exploit the fact that the gels used frequently have a thin geometry to obtain a reduced model for the behaviour of a thin, two-dimensional cell-seeded gel. We find that steady-state solutions of the reduced model require the cell density and volume fraction of polymer in the gel to be spatially uniform, while the gel height may vary spatially. If we further assume that all three of these variables are initially spatially uniform, this continues for all time and the thin film model can be further reduced to solving a single, non-linear ODE for gel height as a function of time. The thin film model is further investigated for both spatially-uniform and varying initial conditions, using a combination of analytical techniques and numerical simulations. We show that a number of qualitatively different behaviours are possible, depending on the composition of the gel (i.e., the chemical potentials) and the strength of the cell traction forces. However, unlike in the earlier one-dimensional model, we do not observe cases where the gel oscillates between swelling and contraction. For the case of initially uniform cell and gel density, our model predicts that the relative change in the gels’ height and length are equal, which justifies an assumption previously used in the work of Stevenson et al. (Biophys J 99(1):19–28, 2010). Conversely, however, even for non-uniform initial conditions, we do not observe cases where the length of the gel changes whilst its height remains constant, which have been reported in another model of osmotic swelling by Trinschek et al. (AIMS Mater Sci 3(3):1138–1159, 2016; Phys Rev Lett 119:078003, 2017).</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"9 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02072-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a mathematical model of an experiment in which cells are cultured within a gel, which in turn floats freely within a liquid nutrient medium. Traction forces exerted by the cells on the gel cause it to contract over time, giving a measure of the strength of these forces. Building upon our previous work (Reoch et al. in J Math Biol 84(5):31, 2022), we exploit the fact that the gels used frequently have a thin geometry to obtain a reduced model for the behaviour of a thin, two-dimensional cell-seeded gel. We find that steady-state solutions of the reduced model require the cell density and volume fraction of polymer in the gel to be spatially uniform, while the gel height may vary spatially. If we further assume that all three of these variables are initially spatially uniform, this continues for all time and the thin film model can be further reduced to solving a single, non-linear ODE for gel height as a function of time. The thin film model is further investigated for both spatially-uniform and varying initial conditions, using a combination of analytical techniques and numerical simulations. We show that a number of qualitatively different behaviours are possible, depending on the composition of the gel (i.e., the chemical potentials) and the strength of the cell traction forces. However, unlike in the earlier one-dimensional model, we do not observe cases where the gel oscillates between swelling and contraction. For the case of initially uniform cell and gel density, our model predicts that the relative change in the gels’ height and length are equal, which justifies an assumption previously used in the work of Stevenson et al. (Biophys J 99(1):19–28, 2010). Conversely, however, even for non-uniform initial conditions, we do not observe cases where the length of the gel changes whilst its height remains constant, which have been reported in another model of osmotic swelling by Trinschek et al. (AIMS Mater Sci 3(3):1138–1159, 2016; Phys Rev Lett 119:078003, 2017).
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.