PDF-5+: a comprehensive powder diffraction file™ for materials characterization

IF 0.3 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Powder Diffraction Pub Date : 2024-04-15 DOI:10.1017/s0885715624000150
Soorya N. Kabekkodu, Anja Dosen, Thomas N. Blanton
{"title":"PDF-5+: a comprehensive powder diffraction file™ for materials characterization","authors":"Soorya N. Kabekkodu, Anja Dosen, Thomas N. Blanton","doi":"10.1017/s0885715624000150","DOIUrl":null,"url":null,"abstract":"For more than 80 years, the scientific community has extensively used International Centre for Diffraction Data's (ICDD®) Powder Diffraction File (PDF®) for material characterization, including powder X-ray diffraction analysis. Historically, PDF was made available for two major material types: one for inorganic analysis and the other for organic analysis. In the early years of the PDF, this two-material approach was implemented due to limited computer capabilities. With Release 2024, ICDD provides a comprehensive database consisting of the entire PDF in one database called PDF-5+, comprised of more than one million entries (1,061,898). The PDF-5+ with a relational database (RDB) construct houses extensive chemical, physical, bibliographic, and crystallographic data, including atomic coordinates and raw data, enabling qualitative and quantitative phase analysis. This wealth of information in one database is advantageous for phase identification, materials characterization, and several data mining applications in materials science. A database of this size needs rigorous data curation and structural and chemical classifications to optimize pattern search/match and characterization methods. Each entry in the PDF has an editorially assigned quality mark. An editorial comment will describe the reason if an entry does not meet the top-quality mark. The editorial processes of ICDD's quality management system are unique in that they are ISO 9001:2015 certified. Among several classifications implemented in PDF-5+, subfiles (such as Bioactive, Pharmaceuticals, Minerals, etc.) directly impact the search/match in minimizing false positives. Scientists with specific field expertise continuously review these subfiles to maintain their quality. This paper describes the features of PDF with an emphasis on the newly released PDF-5+.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Diffraction","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1017/s0885715624000150","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

For more than 80 years, the scientific community has extensively used International Centre for Diffraction Data's (ICDD®) Powder Diffraction File (PDF®) for material characterization, including powder X-ray diffraction analysis. Historically, PDF was made available for two major material types: one for inorganic analysis and the other for organic analysis. In the early years of the PDF, this two-material approach was implemented due to limited computer capabilities. With Release 2024, ICDD provides a comprehensive database consisting of the entire PDF in one database called PDF-5+, comprised of more than one million entries (1,061,898). The PDF-5+ with a relational database (RDB) construct houses extensive chemical, physical, bibliographic, and crystallographic data, including atomic coordinates and raw data, enabling qualitative and quantitative phase analysis. This wealth of information in one database is advantageous for phase identification, materials characterization, and several data mining applications in materials science. A database of this size needs rigorous data curation and structural and chemical classifications to optimize pattern search/match and characterization methods. Each entry in the PDF has an editorially assigned quality mark. An editorial comment will describe the reason if an entry does not meet the top-quality mark. The editorial processes of ICDD's quality management system are unique in that they are ISO 9001:2015 certified. Among several classifications implemented in PDF-5+, subfiles (such as Bioactive, Pharmaceuticals, Minerals, etc.) directly impact the search/match in minimizing false positives. Scientists with specific field expertise continuously review these subfiles to maintain their quality. This paper describes the features of PDF with an emphasis on the newly released PDF-5+.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PDF-5+:用于材料表征的综合粉末衍射文件
80 多年来,科学界广泛使用国际衍射数据中心 (ICDD®) 的粉末衍射文件 (PDF®) 进行材料表征,包括粉末 X 射线衍射分析。从历史上看,PDF 可用于两大类材料:一类用于无机分析,另一类用于有机分析。在 PDF 推出的最初几年,由于计算机能力有限,只能采用双材料方法。随着 2024 版的发布,ICDD 提供了一个全面的数据库,该数据库将整个 PDF 包含在一个名为 PDF-5+ 的数据库中,包含 100 多万个条目(1,061,898)。带有关系数据库 (RDB) 结构的 PDF-5+ 包含大量化学、物理、文献和晶体学数据,包括原子坐标和原始数据,可进行定性和定量相分析。在一个数据库中包含如此丰富的信息,对于材料科学中的相识别、材料表征和一些数据挖掘应用非常有利。如此规模的数据库需要严格的数据整理以及结构和化学分类,以优化模式搜索/匹配和表征方法。PDF 中的每个条目都有编辑指定的质量标记。如果某个条目未达到最高质量标识,编辑评论将说明原因。ICDD 质量管理系统的编辑流程独一无二,已通过 ISO 9001:2015 认证。在 PDF-5+ 中实施的若干分类中,子文件(如生物活性、制药、矿物等)直接影响搜索/匹配,从而最大限度地减少误报。具有特定领域专业知识的科学家会不断审查这些子文件,以保持其质量。本文介绍了 PDF 的功能,重点是新发布的 PDF-5+。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Diffraction
Powder Diffraction 工程技术-材料科学:表征与测试
CiteScore
0.90
自引率
0.00%
发文量
50
审稿时长
>12 weeks
期刊介绍: Powder Diffraction is a quarterly journal publishing articles, both experimental and theoretical, on the use of powder diffraction and related techniques for the characterization of crystalline materials. It is published by Cambridge University Press (CUP) for the International Centre for Diffraction Data (ICDD).
期刊最新文献
Optimizing surface properties in pure titanium for dental implants: a crystallographic analysis of sandblasting and acid-etching techniques Crystal structure of perfluorononanoic acid, C9HF17O2 Structural elucidation of the dichloridodioxido-[(4,7-dimethyl)-1,10-phenanthroline]molybdenum(VI) (C14H12Cl2MoN2O2) X-ray powder diffraction data for mosapride dihydrogen citrate dihydrate Energy-dispersive diffraction tomography of shark vertebral centra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1