{"title":"Driver fatigue detection based on improved YOLOv7","authors":"Xianguo Li, Xueyan Li, Zhenqian Shen, Guangmin Qian","doi":"10.1007/s11554-024-01455-3","DOIUrl":null,"url":null,"abstract":"<p>Fatigue driving is one of the main reasons threatening road traffic safety. Aiming at the problems of complex detection process, low accuracy, and susceptibility to light interference in the current driver fatigue detection algorithm, this paper proposes a driver Eye State detection algorithm based on YOLO, abbreviated as ES-YOLO. The algorithm optimizes the structure of YOLOv7, integrates the multi-scale features using the convolutional block attention mechanism (CBAM), and improves the attention to important spatial locations in the image. Furthermore, using the Focal-EIOU Loss instead of CIOU Loss to increase the attention on difficult samples and reduce the influence of sample class imbalance. Then, based on ES-YOLO, a driver fatigue detection method is proposed, and the driver fatigue judgment logic is designed to monitor the fatigue state in real-time and alarm in time to improve the accuracy of detection. The experiments on the public dataset CEW and the self-made dataset show that the proposed ES-YOLO obtained 99.0% and 98.8% mAP values, respectively, which are better than the compared algorithms. And this method achieves real-time and accurate detection of driver fatigue status. Source code is released in https://www.github/driver-fatigue-detection.git.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"301 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01455-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fatigue driving is one of the main reasons threatening road traffic safety. Aiming at the problems of complex detection process, low accuracy, and susceptibility to light interference in the current driver fatigue detection algorithm, this paper proposes a driver Eye State detection algorithm based on YOLO, abbreviated as ES-YOLO. The algorithm optimizes the structure of YOLOv7, integrates the multi-scale features using the convolutional block attention mechanism (CBAM), and improves the attention to important spatial locations in the image. Furthermore, using the Focal-EIOU Loss instead of CIOU Loss to increase the attention on difficult samples and reduce the influence of sample class imbalance. Then, based on ES-YOLO, a driver fatigue detection method is proposed, and the driver fatigue judgment logic is designed to monitor the fatigue state in real-time and alarm in time to improve the accuracy of detection. The experiments on the public dataset CEW and the self-made dataset show that the proposed ES-YOLO obtained 99.0% and 98.8% mAP values, respectively, which are better than the compared algorithms. And this method achieves real-time and accurate detection of driver fatigue status. Source code is released in https://www.github/driver-fatigue-detection.git.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.