F2S-Net: learning frame-to-segment prediction for online action detection

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Real-Time Image Processing Pub Date : 2024-04-10 DOI:10.1007/s11554-024-01454-4
Yi Liu, Yu Qiao, Yali Wang
{"title":"F2S-Net: learning frame-to-segment prediction for online action detection","authors":"Yi Liu, Yu Qiao, Yali Wang","doi":"10.1007/s11554-024-01454-4","DOIUrl":null,"url":null,"abstract":"<p>Online action detection (OAD) aims at predicting action per frame from a streaming untrimmed video in real time. Most existing approaches leverage all the historical frames in the sliding window as the temporal context of the current frame since single-frame prediction is often unreliable. However, such a manner inevitably introduces useless even noisy video content, which often misleads action classifier when recognizing the ongoing action in the current frame. To alleviate this difficulty, we propose a concise and novel F2S-Net, which can adaptively discover the contextual segments in the online sliding window, and convert current frame prediction into relevant-segment prediction. More specifically, as the current frame can be either action or background, we develop F2S-Net with a distinct two-branch structure, i.e., the action (or background) branch can exploit the action (or background) segments. Via multi-level action supervision, these two branches can complementarily enhance each other, allowing to identify the contextual segments in the sliding window to robustly predict what is ongoing. We evaluate our approach on popular OAD benchmarks, i.e., THUMOS-14, TVSeries and HDD. The extensive results show that our F2S-Net outperforms the recent state-of-the-art approaches.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"22 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01454-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Online action detection (OAD) aims at predicting action per frame from a streaming untrimmed video in real time. Most existing approaches leverage all the historical frames in the sliding window as the temporal context of the current frame since single-frame prediction is often unreliable. However, such a manner inevitably introduces useless even noisy video content, which often misleads action classifier when recognizing the ongoing action in the current frame. To alleviate this difficulty, we propose a concise and novel F2S-Net, which can adaptively discover the contextual segments in the online sliding window, and convert current frame prediction into relevant-segment prediction. More specifically, as the current frame can be either action or background, we develop F2S-Net with a distinct two-branch structure, i.e., the action (or background) branch can exploit the action (or background) segments. Via multi-level action supervision, these two branches can complementarily enhance each other, allowing to identify the contextual segments in the sliding window to robustly predict what is ongoing. We evaluate our approach on popular OAD benchmarks, i.e., THUMOS-14, TVSeries and HDD. The extensive results show that our F2S-Net outperforms the recent state-of-the-art approaches.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
F2S-Net:学习帧到段的预测,实现在线动作检测
在线动作检测(OAD)旨在从未修改的流视频中实时预测每帧的动作。由于单帧预测往往不可靠,因此大多数现有方法都利用滑动窗口中的所有历史帧作为当前帧的时间背景。然而,这种方式不可避免地会引入无用甚至有噪声的视频内容,在识别当前帧中正在进行的动作时往往会误导动作分类器。为了缓解这一难题,我们提出了一种简洁而新颖的 F2S-Net,它可以自适应地发现在线滑动窗口中的上下文片段,并将当前帧预测转换为相关片段预测。更具体地说,由于当前帧可以是动作帧或背景帧,我们开发的 F2S-Net 具有明显的双分支结构,即动作(或背景)分支可以利用动作(或背景)片段。通过多级动作监督,这两个分支可以互补增强,从而识别滑动窗口中的上下文片段,稳健地预测正在进行的内容。我们在常用的 OAD 基准(即 THUMOS-14、TVSeries 和 HDD)上对我们的方法进行了评估。大量结果表明,我们的 F2S-Net 优于最新的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Real-Time Image Processing
Journal of Real-Time Image Processing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
6.80
自引率
6.70%
发文量
68
审稿时长
6 months
期刊介绍: Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed. Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application. It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system. The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.
期刊最新文献
High-precision real-time autonomous driving target detection based on YOLOv8 GMS-YOLO: an enhanced algorithm for water meter reading recognition in complex environments Fast rough mode decision algorithm and hardware architecture design for AV1 encoder AdaptoMixNet: detection of foreign objects on power transmission lines under severe weather conditions Mfdd: Multi-scale attention fatigue and distracted driving detector based on facial features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1