Generalizing minimum safe operating altitudes for fixed-wing UAVs in real-time

IF 4.2 2区 计算机科学 Q2 ROBOTICS Journal of Field Robotics Pub Date : 2024-04-05 DOI:10.1002/rob.22331
Ashford Milne, Alex McConville, Thomas Richardson, Matt Watson, Ben Schellenberg
{"title":"Generalizing minimum safe operating altitudes for fixed-wing UAVs in real-time","authors":"Ashford Milne,&nbsp;Alex McConville,&nbsp;Thomas Richardson,&nbsp;Matt Watson,&nbsp;Ben Schellenberg","doi":"10.1002/rob.22331","DOIUrl":null,"url":null,"abstract":"<p>This paper discusses a method of determining the minimum safe altitude of an uncrewed aerial vehicle (UAV) at any point within a designated airspace by conducting a glide reachability analysis. Recently, fixed-wing UAVs are more regularly deployed near population centers and in extreme environments, requiring increasingly robust emergency systems and planning. The long-ranges and adverse terrain associated with monitoring the Volcán de Fuego in Guatemala by a team from the University of Bristol (UoB) increases the likelihood that motor failure would result in the aircraft being unable to Return To Home (RTH) and impossible to retrieve. A method for delineating a boundary representing the minimum safe altitude required for the aircraft to safely glide to the airfield in the event of a motor failure was developed within MATLAB, defined by the UAV's minimum glide angle in wind. This model was subsequently compared with flight data from UoB missions around Fuego to better improve its accuracy and analyze the limitations of the missions.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 5","pages":"1408-1425"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22331","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22331","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses a method of determining the minimum safe altitude of an uncrewed aerial vehicle (UAV) at any point within a designated airspace by conducting a glide reachability analysis. Recently, fixed-wing UAVs are more regularly deployed near population centers and in extreme environments, requiring increasingly robust emergency systems and planning. The long-ranges and adverse terrain associated with monitoring the Volcán de Fuego in Guatemala by a team from the University of Bristol (UoB) increases the likelihood that motor failure would result in the aircraft being unable to Return To Home (RTH) and impossible to retrieve. A method for delineating a boundary representing the minimum safe altitude required for the aircraft to safely glide to the airfield in the event of a motor failure was developed within MATLAB, defined by the UAV's minimum glide angle in wind. This model was subsequently compared with flight data from UoB missions around Fuego to better improve its accuracy and analyze the limitations of the missions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时归纳固定翼无人机的最低安全运行高度
本文讨论了一种通过进行滑翔可达性分析来确定无人驾驶飞行器(UAV)在指定空域内任意点的最低安全高度的方法。近来,固定翼无人飞行器越来越多地部署在人口中心附近和极端环境中,对应急系统和规划的要求也越来越高。布里斯托尔大学(UoB)的一个团队对危地马拉富埃戈火山(Volcán de Fuego)进行监测时,由于航程较远且地形恶劣,电机故障很可能导致飞机无法返航(RTH),也就无法收回。我们在 MATLAB 中开发了一种方法,用于划定在发生电机故障时飞机安全滑翔到机场所需的最低安全高度边界,该边界由无人机在风中的最小滑翔角定义。随后,将该模型与 UoB 在 Fuego 周围执行任务的飞行数据进行了比较,以更好地提高其准确性并分析任务的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
期刊最新文献
Issue Information Cover Image, Volume 41, Number 8, December 2024 Issue Information ForzaETH Race Stack—Scaled Autonomous Head‐to‐Head Racing on Fully Commercial Off‐the‐Shelf Hardware Research on Satellite Navigation Control of Six‐Crawler Machinery Based on Fuzzy PID Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1