Michelle Noble, Aindrila Chatterjee, Thileepan Sekaran, Thomas Schwarzl, Matthias W Hentze
{"title":"Cytosolic RNA binding of the mitochondrial TCA cycle enzyme malate dehydrogenase (MDH2)","authors":"Michelle Noble, Aindrila Chatterjee, Thileepan Sekaran, Thomas Schwarzl, Matthias W Hentze","doi":"10.1261/rna.079925.123","DOIUrl":null,"url":null,"abstract":"Several enzymes of intermediary metabolism have been identified to bind RNA in 2 cells, with potential consequences for the bound RNAs and/or the enzyme. In this 3 study, we investigate the RNA-binding activity of the mitochondrial enzyme malate 4 dehydrogenase 2 (MDH2), which functions in the tricarboxylic acid (TCA) cycle and 5 the malate-aspartate shuttle. We confirmed in cellulo RNA-binding of MDH2 using 6 orthogonal biochemical assays and performed enhanced crosslinking and 7 immunoprecipitation (eCLIP) to identify the cellular RNAs associated with endogenous 8 MDH2. Surprisingly, MDH2 preferentially binds cytosolic over mitochondrial RNAs, 9 although the latter are abundant in the milieu of the mature protein. Subcellular 10 fractionation followed by RNA-binding assays revealed that MDH2-RNA interactions 11 occur predominantly outside of mitochondria. We also found that a cytosolically-12 retained N-terminal deletion mutant of MDH2 is competent to bind RNA, indicating that 13 mitochondrial targeting is dispensable for MDH2-RNA interactions. MDH2 RNA 14 binding increased when cellular NAD+ levels (MDH2’s co-factor) was 15 pharmacologically diminished, suggesting that the metabolic state of cells affects RNA 16 binding. Taken together, our data implicate an as yet unidentified function of MDH2 17 binding RNA in the cytosol.","PeriodicalId":21401,"journal":{"name":"RNA","volume":"10 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.079925.123","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Several enzymes of intermediary metabolism have been identified to bind RNA in 2 cells, with potential consequences for the bound RNAs and/or the enzyme. In this 3 study, we investigate the RNA-binding activity of the mitochondrial enzyme malate 4 dehydrogenase 2 (MDH2), which functions in the tricarboxylic acid (TCA) cycle and 5 the malate-aspartate shuttle. We confirmed in cellulo RNA-binding of MDH2 using 6 orthogonal biochemical assays and performed enhanced crosslinking and 7 immunoprecipitation (eCLIP) to identify the cellular RNAs associated with endogenous 8 MDH2. Surprisingly, MDH2 preferentially binds cytosolic over mitochondrial RNAs, 9 although the latter are abundant in the milieu of the mature protein. Subcellular 10 fractionation followed by RNA-binding assays revealed that MDH2-RNA interactions 11 occur predominantly outside of mitochondria. We also found that a cytosolically-12 retained N-terminal deletion mutant of MDH2 is competent to bind RNA, indicating that 13 mitochondrial targeting is dispensable for MDH2-RNA interactions. MDH2 RNA 14 binding increased when cellular NAD+ levels (MDH2’s co-factor) was 15 pharmacologically diminished, suggesting that the metabolic state of cells affects RNA 16 binding. Taken together, our data implicate an as yet unidentified function of MDH2 17 binding RNA in the cytosol.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.