{"title":"Leveraging Frame- and Feature-Level Progressive Augmentation for Semi-supervised Action Recognition","authors":"Zhewei Tu, Xiangbo Shu, Peng Huang, Rui Yan, Zhenxing Liu, Jiachao Zhang","doi":"10.1145/3655025","DOIUrl":null,"url":null,"abstract":"<p>Semi-supervised action recognition is a challenging yet prospective task due to its low reliance on costly labeled videos. One high-profile solution is to explore frame-level weak/strong augmentations for learning abundant representations, inspired by the FixMatch framework dominating the semi-supervised image classification task. However, such a solution mainly brings perturbations in terms of texture and scale, leading to the limitation in learning action representations in videos with spatiotemporal redundancy and complexity. Therefore, we revisit the creative trick of weak/strong augmentations in FixMatch, and then propose a novel Frame- and Feature-level augmentation FixMatch (dubbed as F<sup>2</sup>-FixMatch) framework to learn more abundant action representations for being robust to complex and dynamic video scenarios. Specifically, we design a new Progressive Augmentation (P-Aug) mechanism that implements the weak/strong augmentations first at the frame level, and further implements the perturbation at the feature level, to obtain abundant four types of augmented features in broader perturbation spaces. Moreover, we present an evolved Multihead Pseudo-Labeling (MPL) scheme to promote the consistency of features across different augmented versions based on the pseudo labels. We conduct extensive experiments on several public datasets to demonstrate that our F<sup>2</sup>-FixMatch achieves the performance gain compared with current state-of-the-art methods. The source codes of F<sup>2</sup>-FixMatch are publicly available at https://github.com/zwtu/F2FixMatch.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"36 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3655025","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-supervised action recognition is a challenging yet prospective task due to its low reliance on costly labeled videos. One high-profile solution is to explore frame-level weak/strong augmentations for learning abundant representations, inspired by the FixMatch framework dominating the semi-supervised image classification task. However, such a solution mainly brings perturbations in terms of texture and scale, leading to the limitation in learning action representations in videos with spatiotemporal redundancy and complexity. Therefore, we revisit the creative trick of weak/strong augmentations in FixMatch, and then propose a novel Frame- and Feature-level augmentation FixMatch (dubbed as F2-FixMatch) framework to learn more abundant action representations for being robust to complex and dynamic video scenarios. Specifically, we design a new Progressive Augmentation (P-Aug) mechanism that implements the weak/strong augmentations first at the frame level, and further implements the perturbation at the feature level, to obtain abundant four types of augmented features in broader perturbation spaces. Moreover, we present an evolved Multihead Pseudo-Labeling (MPL) scheme to promote the consistency of features across different augmented versions based on the pseudo labels. We conduct extensive experiments on several public datasets to demonstrate that our F2-FixMatch achieves the performance gain compared with current state-of-the-art methods. The source codes of F2-FixMatch are publicly available at https://github.com/zwtu/F2FixMatch.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.