{"title":"Correlation of High-Speed Tiltrotor Stability Predictions with Test Data and Parametric Study","authors":"Seyhan Gul, Hyeonsoo Yeo","doi":"10.2514/1.c037807","DOIUrl":null,"url":null,"abstract":"<p>High-speed stability of tiltrotor was studied. The University of Maryland’s Maryland Tiltrotor Rig (MTR) was chosen for the analysis due to availability of properties and test data, and its interesting high-stability behavior observed in the Glenn L. Martin wind tunnel in August 2022. A Rotorcraft Comprehensive Analysis System (RCAS) model of the MTR gimbaled hub was built in addition to the University of Maryland Advanced Rotorcraft Code-II (UMARC-II) model from previous work. The objective is threefold: i) validate RCAS tiltrotor stability predictions, ii) shed light on the high-stability behavior of the MTR, and iii) find ways to lower the instability speed of the MTR for future wind tunnel tests. Trim collective for freewheeling and stability predictions were compared with wind tunnel test data up to 200 knots. RCAS and UMARC-II predictions showed good agreement with each other and the test data. Predictions show that MTR is stable up to 215 knots (490-knots full-scale flight) although the wing is only 18% thick (current technology is 23%). A parametric study was carried out. The impact of wing stiffness, pitch-flap coupling (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msub><mi>δ</mi><mn>3</mn></msub></mrow></math></span><span></span> angle), lag stiffness, blade chord, number of blades, pylon mass, pylon center of gravity (c.g.), pylon location, and rotor speed was studied. MTR’s pylon c.g. is unconventionally behind the wing elastic axis. It was found that this significantly improved stability. This behavior is not specific to MTR; full-scale aircraft stability can also be improved by moving the pylon c.g. backward if wing beam is the least stable mode. A combination of forward pylon c.g., reduced rotor speed, and increased blade chord reduced the instability speed by more than 55 knots to near 160 knots, helping researchers obtain high-quality test data in the upcoming Glenn L. Martin wind tunnel tests.</p>","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"55 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.c037807","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
High-speed stability of tiltrotor was studied. The University of Maryland’s Maryland Tiltrotor Rig (MTR) was chosen for the analysis due to availability of properties and test data, and its interesting high-stability behavior observed in the Glenn L. Martin wind tunnel in August 2022. A Rotorcraft Comprehensive Analysis System (RCAS) model of the MTR gimbaled hub was built in addition to the University of Maryland Advanced Rotorcraft Code-II (UMARC-II) model from previous work. The objective is threefold: i) validate RCAS tiltrotor stability predictions, ii) shed light on the high-stability behavior of the MTR, and iii) find ways to lower the instability speed of the MTR for future wind tunnel tests. Trim collective for freewheeling and stability predictions were compared with wind tunnel test data up to 200 knots. RCAS and UMARC-II predictions showed good agreement with each other and the test data. Predictions show that MTR is stable up to 215 knots (490-knots full-scale flight) although the wing is only 18% thick (current technology is 23%). A parametric study was carried out. The impact of wing stiffness, pitch-flap coupling ( angle), lag stiffness, blade chord, number of blades, pylon mass, pylon center of gravity (c.g.), pylon location, and rotor speed was studied. MTR’s pylon c.g. is unconventionally behind the wing elastic axis. It was found that this significantly improved stability. This behavior is not specific to MTR; full-scale aircraft stability can also be improved by moving the pylon c.g. backward if wing beam is the least stable mode. A combination of forward pylon c.g., reduced rotor speed, and increased blade chord reduced the instability speed by more than 55 knots to near 160 knots, helping researchers obtain high-quality test data in the upcoming Glenn L. Martin wind tunnel tests.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.