Javier Pérez, Cecilia Brand, Alberto Alonso, Alaia Sarasa, Diana Rojo, Francisco Correa-Araneda, Luz Boyero
{"title":"Wildfires alter stream ecosystem functioning through effects on leaf litter","authors":"Javier Pérez, Cecilia Brand, Alberto Alonso, Alaia Sarasa, Diana Rojo, Francisco Correa-Araneda, Luz Boyero","doi":"10.1186/s42408-024-00268-w","DOIUrl":null,"url":null,"abstract":"Wildfires have strong impacts on terrestrial and aquatic ecosystems, whose frequency, severity, and intensity are increasing with climate change. Moreover, the expansion of exotic monoculture plantations, such as those of eucalypts, increases this risk. When wildfires do not cause the disappearance of riparian vegetation, they still imply the fall of leaf litter exposed to the fire (i.e., crown scorch), which consequences for ecosystems are unknown. To explore how these leaf litter inputs may affect stream ecosystem functioning, we conducted a microcosm experiment where we quantified the decomposition of leaf litter from three tree species (alder, oak, and eucalypt) under two conditions (control litter simulating natural entries and litter subjected to 150 °C for 3 h mimicking exposure to fire). We also examined the interaction between this factor and a temperature rise (which is often associated to the loss of riparian vegetation caused by the wildfire) by manipulating water temperature (10, 12.5, and 15 °C). Finally, we explored the effects of these variables on the growth of a common detritivore, the caddisfly Sericostoma pyrenaicum. Control alder presented the highest decomposition rates, which were notably reduced due to fire exposure. On the contrary, eucalypt litter decomposition was even slower than that of oak and hardly showed any effect derived from fire exposure. The different leaf litter types determined detritivore growth, to a greater extent than variation related to warming, which generally had negligible effects. Our study shows the negative effects of wildfires on stream ecosystem functioning even when they only involve brief exposure of leaf litter to the fire. Effects are greater on the most palatable native species, which represents the highest quality input in streams of the study area. Our results highlight the importance of protecting riparian forests, especially those composed of native species, against wildfires.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s42408-024-00268-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wildfires have strong impacts on terrestrial and aquatic ecosystems, whose frequency, severity, and intensity are increasing with climate change. Moreover, the expansion of exotic monoculture plantations, such as those of eucalypts, increases this risk. When wildfires do not cause the disappearance of riparian vegetation, they still imply the fall of leaf litter exposed to the fire (i.e., crown scorch), which consequences for ecosystems are unknown. To explore how these leaf litter inputs may affect stream ecosystem functioning, we conducted a microcosm experiment where we quantified the decomposition of leaf litter from three tree species (alder, oak, and eucalypt) under two conditions (control litter simulating natural entries and litter subjected to 150 °C for 3 h mimicking exposure to fire). We also examined the interaction between this factor and a temperature rise (which is often associated to the loss of riparian vegetation caused by the wildfire) by manipulating water temperature (10, 12.5, and 15 °C). Finally, we explored the effects of these variables on the growth of a common detritivore, the caddisfly Sericostoma pyrenaicum. Control alder presented the highest decomposition rates, which were notably reduced due to fire exposure. On the contrary, eucalypt litter decomposition was even slower than that of oak and hardly showed any effect derived from fire exposure. The different leaf litter types determined detritivore growth, to a greater extent than variation related to warming, which generally had negligible effects. Our study shows the negative effects of wildfires on stream ecosystem functioning even when they only involve brief exposure of leaf litter to the fire. Effects are greater on the most palatable native species, which represents the highest quality input in streams of the study area. Our results highlight the importance of protecting riparian forests, especially those composed of native species, against wildfires.
期刊介绍:
Fire Ecology is the international scientific journal supported by the Association for Fire Ecology. Fire Ecology publishes peer-reviewed articles on all ecological and management aspects relating to wildland fire. We welcome submissions on topics that include a broad range of research on the ecological relationships of fire to its environment, including, but not limited to:
Ecology (physical and biological fire effects, fire regimes, etc.)
Social science (geography, sociology, anthropology, etc.)
Fuel
Fire science and modeling
Planning and risk management
Law and policy
Fire management
Inter- or cross-disciplinary fire-related topics
Technology transfer products.