Engineering a solar formic acid/pentose (SFAP) pathway in Escherichia coli for lactic acid production

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-04-15 DOI:10.1016/j.ymben.2024.04.002
Yajing Zhang , Tao Sun , Linqi Liu , Xupeng Cao , Weiwen Zhang , Wangyin Wang , Can Li
{"title":"Engineering a solar formic acid/pentose (SFAP) pathway in Escherichia coli for lactic acid production","authors":"Yajing Zhang ,&nbsp;Tao Sun ,&nbsp;Linqi Liu ,&nbsp;Xupeng Cao ,&nbsp;Weiwen Zhang ,&nbsp;Wangyin Wang ,&nbsp;Can Li","doi":"10.1016/j.ymben.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial CO<sub>2</sub> fixation into lactic acid (LA) is an important approach for low-carbon biomanufacturing. Engineering microbes to utilize CO<sub>2</sub> and sugar as co-substrates can create efficient pathways through input of moderate reducing power to drive CO<sub>2</sub> fixation into product. However, to achieve complete conservation of organic carbon, how to engineer the CO<sub>2</sub>-fixing modules compatible with native central metabolism and merge the processes for improving bioproduction of LA is a big challenge. In this study, we designed and constructed a solar formic acid/pentose (SFAP) pathway in <em>Escherichia coli</em>, which enabled CO<sub>2</sub> fixation merging into sugar catabolism to produce LA. In the SFAP pathway, adequate reducing equivalents from formate oxidation drive glucose metabolism shifting from glycolysis to the pentose phosphate pathway. The Rubisco-based CO<sub>2</sub> fixation and sequential reduction of C3 intermediates are conducted to produce LA stoichiometrically. CO<sub>2</sub> fixation theoretically can bring a 20% increase of LA production compared with sole glucose feedstock. This SFAP pathway in the integration of photoelectrochemical cell and an engineered <em>Escherichia coli</em> opens an efficient way for fixing CO<sub>2</sub> into value-added bioproducts.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"83 ","pages":"Pages 150-159"},"PeriodicalIF":6.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000569","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial CO2 fixation into lactic acid (LA) is an important approach for low-carbon biomanufacturing. Engineering microbes to utilize CO2 and sugar as co-substrates can create efficient pathways through input of moderate reducing power to drive CO2 fixation into product. However, to achieve complete conservation of organic carbon, how to engineer the CO2-fixing modules compatible with native central metabolism and merge the processes for improving bioproduction of LA is a big challenge. In this study, we designed and constructed a solar formic acid/pentose (SFAP) pathway in Escherichia coli, which enabled CO2 fixation merging into sugar catabolism to produce LA. In the SFAP pathway, adequate reducing equivalents from formate oxidation drive glucose metabolism shifting from glycolysis to the pentose phosphate pathway. The Rubisco-based CO2 fixation and sequential reduction of C3 intermediates are conducted to produce LA stoichiometrically. CO2 fixation theoretically can bring a 20% increase of LA production compared with sole glucose feedstock. This SFAP pathway in the integration of photoelectrochemical cell and an engineered Escherichia coli opens an efficient way for fixing CO2 into value-added bioproducts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在大肠杆菌中设计太阳能甲酸/戊糖(SFAP)途径以生产乳酸
微生物将二氧化碳固定为乳酸(LA)是低碳生物制造的重要方法。利用微生物工程技术将二氧化碳和糖作为共底物,可以通过输入适度的还原力来驱动二氧化碳固定到产品中,从而创建高效的途径。然而,要实现对有机碳的完全保护,如何设计出与原生中央代谢兼容的二氧化碳固定模块,并将这些过程合并以提高 LA 的生物生产是一个巨大的挑战。在这项研究中,我们在大肠杆菌中设计并构建了太阳能甲酸/戊糖(SFAP)途径,使二氧化碳固定与糖分解代谢相结合,生产 LA。在 SFAP 途径中,甲酸氧化产生的足够还原当量推动葡萄糖代谢从糖酵解转向磷酸戊糖途径。以 Rubisco 为基础的 CO2 固定和 C3 中间产物的顺序还原按比例产生 LA。与单纯的葡萄糖原料相比,二氧化碳固定理论上可使 LA 的产量提高 20%。这种将光电化学电池和工程大肠杆菌整合在一起的 SFAP 途径为将 CO2 固定为高附加值生物产品开辟了一条有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Unraveling productivity-enhancing genes in Chinese hamster ovary cells via CRISPR activation screening using recombinase-mediated cassette exchange system. The faucet knob effect of DptE crotonylation on the initial flow of daptomycin biosynthesis. Versatile Xylose and Arabinose Genetic Switches development for Yeasts. Not all cytochrome b5s are created equal: How a specific CytB5 boosts forskolin biosynthesis in Saccharomyces cerevisiae Applying metabolic control strategies to engineered T cell cancer therapies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1