Gustavo Perez, Wenlong Zhao, Zezhou Cheng, Maria Carolina T. D. Belotti, Yuting Deng, Victoria F. Simons, Elske Tielens, Jeffrey F. Kelly, Kyle G. Horton, Subhransu Maji, Daniel Sheldon
{"title":"Using spatiotemporal information in weather radar data to detect and track communal roosts","authors":"Gustavo Perez, Wenlong Zhao, Zezhou Cheng, Maria Carolina T. D. Belotti, Yuting Deng, Victoria F. Simons, Elske Tielens, Jeffrey F. Kelly, Kyle G. Horton, Subhransu Maji, Daniel Sheldon","doi":"10.1002/rse2.388","DOIUrl":null,"url":null,"abstract":"The exodus of flying animals from their roosting locations is often visible as expanding ring‐shaped patterns in weather radar data. The NEXRAD network, for example, archives more than 25 years of data across 143 contiguous US radar stations, providing opportunities to study roosting locations and times and the ecosystems of birds and bats. However, access to this information is limited by the cost of manually annotating millions of radar scans. We develop and deploy an AI‐assisted system to annotate roosts in radar data. We build datasets with roost annotations to support the training and evaluation of automated detection models. Roosts are detected, tracked, and incorporated into our developed web‐based interface for human screening to produce research‐grade annotations. We deploy the system to collect swallow and martin roost information from 12 radar stations around the Great Lakes spanning 21 years. After verifying the practical value of the system, we propose to improve the detector by incorporating both spatial and temporal channels from volumetric radar scans. The deployment on Great Lakes radar scans allows accelerated annotation of 15 628 roost signatures in 612 786 radar scans with 183.6 human screening hours, or 1.08 s per radar scan. We estimate that the deployed system reduces human annotation time by ~7×. The temporal detector model improves the average precision at intersection‐over‐union threshold 0.5 (AP<jats:sup>IoU = .50</jats:sup>) by 8% over the previous model (48%→56%), further reducing human screening time by 2.3× in its pilot deployment. These data contain critical information about phenology and population trends of swallows and martins, aerial insectivore species experiencing acute declines, and have enabled novel research. We present error analyses, lay the groundwork for continent‐scale historical investigation about these species, and provide a starting point for automating the detection of other family‐specific phenomena in radar data, such as bat roosts and mayfly hatches.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"49 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.388","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The exodus of flying animals from their roosting locations is often visible as expanding ring‐shaped patterns in weather radar data. The NEXRAD network, for example, archives more than 25 years of data across 143 contiguous US radar stations, providing opportunities to study roosting locations and times and the ecosystems of birds and bats. However, access to this information is limited by the cost of manually annotating millions of radar scans. We develop and deploy an AI‐assisted system to annotate roosts in radar data. We build datasets with roost annotations to support the training and evaluation of automated detection models. Roosts are detected, tracked, and incorporated into our developed web‐based interface for human screening to produce research‐grade annotations. We deploy the system to collect swallow and martin roost information from 12 radar stations around the Great Lakes spanning 21 years. After verifying the practical value of the system, we propose to improve the detector by incorporating both spatial and temporal channels from volumetric radar scans. The deployment on Great Lakes radar scans allows accelerated annotation of 15 628 roost signatures in 612 786 radar scans with 183.6 human screening hours, or 1.08 s per radar scan. We estimate that the deployed system reduces human annotation time by ~7×. The temporal detector model improves the average precision at intersection‐over‐union threshold 0.5 (APIoU = .50) by 8% over the previous model (48%→56%), further reducing human screening time by 2.3× in its pilot deployment. These data contain critical information about phenology and population trends of swallows and martins, aerial insectivore species experiencing acute declines, and have enabled novel research. We present error analyses, lay the groundwork for continent‐scale historical investigation about these species, and provide a starting point for automating the detection of other family‐specific phenomena in radar data, such as bat roosts and mayfly hatches.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.