Henning Helmers, Eduard Oliva, Michael Schachtner, Gabriele Mikolasch, Luis A. Ruiz-Preciado, Alexander Franke, Jonas Bartsch
{"title":"Overcoming optical-electrical grid design trade-offs for cm2-sized high-power GaAs photonic power converters by plating technology","authors":"Henning Helmers, Eduard Oliva, Michael Schachtner, Gabriele Mikolasch, Luis A. Ruiz-Preciado, Alexander Franke, Jonas Bartsch","doi":"10.1002/pip.3804","DOIUrl":null,"url":null,"abstract":"<p>The optimization of III-V-based photovoltaic cells involves addressing the trade-off between optical losses due to grid shading and electrical losses due to series resistance. In this work, we overcome the boundary conditions of this optimization problem by increasing the grid line height. Contrary to a few micrometer high evaporated metal grid lines, distributed circuit modeling of 1-cm<sup>2</sup> GaAs photonic power converters suggests that 15-μm high grid lines yield the best performances, especially for high-current operation in the 1 to 10 A cm<sup>−2</sup> range. We have successfully implemented a silver plating process into the fabrication scheme of these devices. Current–voltage measurements under intense illumination demonstrate fill factors above 80% at currents up to 35.8 A, highlighting the capability to extract such high currents without major series resistance losses. Under equivalent monochromatic input power of 62.6 W, this results in a maximum power output of 35.5 W from the 1-cm<sup>2</sup> single-junction photovoltaic cell. This development enables optical power links with largely increased power densities, reducing the material demand of precious semiconductors and associated costs.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 9","pages":"636-642"},"PeriodicalIF":8.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3804","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3804","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The optimization of III-V-based photovoltaic cells involves addressing the trade-off between optical losses due to grid shading and electrical losses due to series resistance. In this work, we overcome the boundary conditions of this optimization problem by increasing the grid line height. Contrary to a few micrometer high evaporated metal grid lines, distributed circuit modeling of 1-cm2 GaAs photonic power converters suggests that 15-μm high grid lines yield the best performances, especially for high-current operation in the 1 to 10 A cm−2 range. We have successfully implemented a silver plating process into the fabrication scheme of these devices. Current–voltage measurements under intense illumination demonstrate fill factors above 80% at currents up to 35.8 A, highlighting the capability to extract such high currents without major series resistance losses. Under equivalent monochromatic input power of 62.6 W, this results in a maximum power output of 35.5 W from the 1-cm2 single-junction photovoltaic cell. This development enables optical power links with largely increased power densities, reducing the material demand of precious semiconductors and associated costs.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.