Tomás Gutierrez, Davi Valladão, Bernardo K. Pagnoncelli
{"title":"PolieDRO: a novel classification and regression framework with non-parametric data-driven regularization","authors":"Tomás Gutierrez, Davi Valladão, Bernardo K. Pagnoncelli","doi":"10.1007/s10994-024-06544-9","DOIUrl":null,"url":null,"abstract":"<p>PolieDRO is a novel analytics framework for classification and regression that harnesses the power and flexibility of data-driven distributionally robust optimization (DRO) to circumvent the need for regularization hyperparameters. Recent literature shows that traditional machine learning methods such as SVM and (square-root) LASSO can be written as Wasserstein-based DRO problems. Inspired by those results we propose a hyperparameter-free ambiguity set that explores the polyhedral structure of data-driven convex hulls, generating computationally tractable regression and classification methods for any convex loss function. Numerical results based on 100 real-world databases and an extensive experiment with synthetically generated data show that our methods consistently outperform their traditional counterparts.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"14 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06544-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
PolieDRO is a novel analytics framework for classification and regression that harnesses the power and flexibility of data-driven distributionally robust optimization (DRO) to circumvent the need for regularization hyperparameters. Recent literature shows that traditional machine learning methods such as SVM and (square-root) LASSO can be written as Wasserstein-based DRO problems. Inspired by those results we propose a hyperparameter-free ambiguity set that explores the polyhedral structure of data-driven convex hulls, generating computationally tractable regression and classification methods for any convex loss function. Numerical results based on 100 real-world databases and an extensive experiment with synthetically generated data show that our methods consistently outperform their traditional counterparts.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.