{"title":"Discovering metal complexes in vast chemical spaces","authors":"","doi":"10.1038/s43588-024-00618-3","DOIUrl":null,"url":null,"abstract":"Approaches are needed to accelerate the discovery of transition metal complexes (TMCs), which is challenging owing to their vast chemical space. A large dataset of diverse ligands is now introduced and leveraged in a multiobjective genetic algorithm that enables the efficient optimization of TMCs in chemical spaces containing billions of them.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00618-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Approaches are needed to accelerate the discovery of transition metal complexes (TMCs), which is challenging owing to their vast chemical space. A large dataset of diverse ligands is now introduced and leveraged in a multiobjective genetic algorithm that enables the efficient optimization of TMCs in chemical spaces containing billions of them.