Numerical Analysis of the Blade Coating Process Using Non-Newtonian Nanofluid with Magnetohydrodynamic (MHD) and Slip Effects

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Macromolecular Theory and Simulations Pub Date : 2024-04-17 DOI:10.1002/mats.202400017
Muhammad Asif Javed, Abuzar Ghaffari, Sami Ullah Khan, Ehab Elattar
{"title":"Numerical Analysis of the Blade Coating Process Using Non-Newtonian Nanofluid with Magnetohydrodynamic (MHD) and Slip Effects","authors":"Muhammad Asif Javed,&nbsp;Abuzar Ghaffari,&nbsp;Sami Ullah Khan,&nbsp;Ehab Elattar","doi":"10.1002/mats.202400017","DOIUrl":null,"url":null,"abstract":"<p>The coating process is widely used in various industries to enhance the production quality and efficiency. This study gives a comprehensive analysis of non-isothermal blade coating of non-Newtonian nanofluid incorporating magnetic, thermophoresis, and Brownian effects. The mathematical equations derived from mass, momentum, and energy conservation laws are initially streamlined by means of lubrication approximation theory (LAT). Subsequently, these dimensionless equations are solved in dimensionless form numerically using fourth order Runge–Kutta and Newton–Raphson methods. This study includes the effects of the slip parameter, magnetohydrodynamic (MHD) and other material parameters on the coating thickness (<span></span><math>\n <semantics>\n <msub>\n <mi>h</mi>\n <mn>1</mn>\n </msub>\n <annotation>${{h}_1}$</annotation>\n </semantics></math>), blade load, velocity, temperature, concentration, and pressure profiles through graphs and tables. The velocity of molten polymer increases near the substrate while it decreases near the blade surface as the slip parameter increases. The temperature distribution increases as the Brinkman number rises, with the maximum temperature occurring in the nip region of the flow. The coating thickness and load-carrying force for both plane and exponential coater increase with higher values of the magnetohydrodynamic (MHD) parameter.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202400017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The coating process is widely used in various industries to enhance the production quality and efficiency. This study gives a comprehensive analysis of non-isothermal blade coating of non-Newtonian nanofluid incorporating magnetic, thermophoresis, and Brownian effects. The mathematical equations derived from mass, momentum, and energy conservation laws are initially streamlined by means of lubrication approximation theory (LAT). Subsequently, these dimensionless equations are solved in dimensionless form numerically using fourth order Runge–Kutta and Newton–Raphson methods. This study includes the effects of the slip parameter, magnetohydrodynamic (MHD) and other material parameters on the coating thickness ( h 1 ${{h}_1}$ ), blade load, velocity, temperature, concentration, and pressure profiles through graphs and tables. The velocity of molten polymer increases near the substrate while it decreases near the blade surface as the slip parameter increases. The temperature distribution increases as the Brinkman number rises, with the maximum temperature occurring in the nip region of the flow. The coating thickness and load-carrying force for both plane and exponential coater increase with higher values of the magnetohydrodynamic (MHD) parameter.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用具有磁流体动力(MHD)和滑移效应的非牛顿纳米流体对叶片涂层工艺进行数值分析
涂层工艺被广泛应用于各行各业,以提高生产质量和效率。本研究全面分析了非牛顿纳米流体的非等温叶片涂层,其中包含磁效应、热泳效应和布朗效应。首先通过润滑近似理论(LAT)简化了由质量、动量和能量守恒定律导出的数学方程。随后,使用四阶 Runge-Kutta 和牛顿-拉斐森方法对这些无量纲方程进行数值求解。这项研究包括滑移参数、磁流体力学(MHD)和其他材料参数对涂层厚度()、叶片载荷、速度、温度、浓度和压力曲线的影响,并通过图表进行了说明。随着滑移参数的增大,熔融聚合物的速度在基体附近增大,而在叶片表面附近减小。温度分布随着布林克曼数的增加而增加,最高温度出现在流动的压区。平面镀膜机和指数镀膜机的涂层厚度和承载力都会随着磁流体力学(MHD)参数值的增加而增加。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
期刊最新文献
Masthead: Macromol. Theory Simul. 5/2024 Investigating the Effect of Rheological Parameter Ratios on the Mixing Properties of TPU Blends Rheological Equivalent Circuit Model Using Electrochemical Impedance Analysis Effect of Hydrolyzed Polyacrylamide on the Emulsion Stability by Multiple Light Scattering and Molecular Dynamics Simulation The Importance of the Knowledge of Errors in the Measurements in the Determination of Copolymer Reactivity Ratios from Composition Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1