D Hachmeister, C Silva, J Santos, G D Conway, L Gil, A Silva, U Stroth, J Vicente, E Wolfrum, R M McDermott, R Dux, D Brida, R Fischer, B Kurzan, the ASDEX Upgrade Team4, the EUROfusion MST1 Team5
{"title":"Influence of the magnetic configuration on the high-field side scrape-off layer at ASDEX Upgrade and the role of the secondary separatrix","authors":"D Hachmeister, C Silva, J Santos, G D Conway, L Gil, A Silva, U Stroth, J Vicente, E Wolfrum, R M McDermott, R Dux, D Brida, R Fischer, B Kurzan, the ASDEX Upgrade Team4, the EUROfusion MST1 Team5","doi":"10.1088/1361-6587/ad3a9f","DOIUrl":null,"url":null,"abstract":"In tokamaks, radial transport is ballooning, meaning it is enhanced at the low-field side (LFS). This work investigates the effect of the magnetic configuration on the high-field side (HFS) scrape-off layer. Our experiments involved L-mode and H-mode discharges at ASDEX Upgrade, in which we scanned the magnetic configuration from a lower to an upper single-null shape, thus varying the location of the secondary separatrix. We show that the secondary separatrix determines the width of the HFS scrape-off layer, meaning that the density is much lower in the region that is magnetically disconnected from the LFS scrape-off layer, outside the secondary separatrix. Furthermore, we observe that the large density often seen in the HFS divertor drastically decreases as the separation between the primary and secondary separatrices falls below a particular value. This value is different for L-mode and H-mode plasmas and closely matches the power decay length measured at the LFS midplane. We also show how the HFS scrape-off layer density is smaller in an upper single-null than in a lower single-null, when the ionic grad-B drift points down. This difference is likely caused by reversing the <inline-formula>\n<tex-math><?CDATA $\\mathrm{E}\\times\\mathrm{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">E</mml:mi></mml:mrow><mml:mo>×</mml:mo><mml:mrow><mml:mi mathvariant=\"normal\">B</mml:mi></mml:mrow></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad3a9fieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> drifts in the active divertor when switching the active X-point from the bottom to the top. We further observe that the neutral density in the lower divertor also correlates with the plasma shape and the high-density region in the HFS scrape-off layer. During the shape scans analyzed here, the HFS divertor remained partially detached throughout, with transitory reattachment modulated by ELM activity in H-mode. This work provides novel experimental data that can be leveraged to further the modeling capabilities and understanding of scrape-off layer physics in highly shaped plasmas.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"3 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad3a9f","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
In tokamaks, radial transport is ballooning, meaning it is enhanced at the low-field side (LFS). This work investigates the effect of the magnetic configuration on the high-field side (HFS) scrape-off layer. Our experiments involved L-mode and H-mode discharges at ASDEX Upgrade, in which we scanned the magnetic configuration from a lower to an upper single-null shape, thus varying the location of the secondary separatrix. We show that the secondary separatrix determines the width of the HFS scrape-off layer, meaning that the density is much lower in the region that is magnetically disconnected from the LFS scrape-off layer, outside the secondary separatrix. Furthermore, we observe that the large density often seen in the HFS divertor drastically decreases as the separation between the primary and secondary separatrices falls below a particular value. This value is different for L-mode and H-mode plasmas and closely matches the power decay length measured at the LFS midplane. We also show how the HFS scrape-off layer density is smaller in an upper single-null than in a lower single-null, when the ionic grad-B drift points down. This difference is likely caused by reversing the E×B drifts in the active divertor when switching the active X-point from the bottom to the top. We further observe that the neutral density in the lower divertor also correlates with the plasma shape and the high-density region in the HFS scrape-off layer. During the shape scans analyzed here, the HFS divertor remained partially detached throughout, with transitory reattachment modulated by ELM activity in H-mode. This work provides novel experimental data that can be leveraged to further the modeling capabilities and understanding of scrape-off layer physics in highly shaped plasmas.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.