Isaiah W. Bolden, Julian P. Sachs, Alexander C. Gagnon
{"title":"Geochemical evidence of temporal ecosystem photosynthetic plasticity within a pristine coral atoll","authors":"Isaiah W. Bolden, Julian P. Sachs, Alexander C. Gagnon","doi":"10.1007/s00338-024-02493-w","DOIUrl":null,"url":null,"abstract":"<p>The impacts of ocean acidification on coral reef macroalgal community composition and metabolism have implications for the habitat supporting capacity of future reefs. In this pilot study, we use co-located semi-hourly measurements of total dissolved inorganic carbon (DIC), total alkalinity, and the stable carbon isotope composition of DIC (<i>δ</i><sup>13</sup>C<sub>DIC</sub>) over a 27 + h period from Tetiaroa Atoll, French Polynesia, to investigate the potential for reef carbonate chemistry to record information related to benthic photosynthetic community composition and response to natural gradients in ambient acidity and dissolved carbon dioxide. The results of this preliminary sampling and modeling exercise suggest that Tetiaroa’s macroalgal communities express plastic carbon-concentrating mechanisms (CCMs) over daily cycles of productivity but may potentially vary this expression as a function of ambient CO<sub>2</sub> and acidity within the ecosystem. Additional studies are, therefore, underway to investigate the implications of these observations for reef macroalgal compositional differences under rapidly acidifying oceans.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"13 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02493-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The impacts of ocean acidification on coral reef macroalgal community composition and metabolism have implications for the habitat supporting capacity of future reefs. In this pilot study, we use co-located semi-hourly measurements of total dissolved inorganic carbon (DIC), total alkalinity, and the stable carbon isotope composition of DIC (δ13CDIC) over a 27 + h period from Tetiaroa Atoll, French Polynesia, to investigate the potential for reef carbonate chemistry to record information related to benthic photosynthetic community composition and response to natural gradients in ambient acidity and dissolved carbon dioxide. The results of this preliminary sampling and modeling exercise suggest that Tetiaroa’s macroalgal communities express plastic carbon-concentrating mechanisms (CCMs) over daily cycles of productivity but may potentially vary this expression as a function of ambient CO2 and acidity within the ecosystem. Additional studies are, therefore, underway to investigate the implications of these observations for reef macroalgal compositional differences under rapidly acidifying oceans.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.