Substorm Signatures in the Dayside Magnetosphere

IF 1.7 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Annales Geophysicae Pub Date : 2024-04-17 DOI:10.5194/egusphere-2024-1113
Sanjay Kumar, Tuija I. Pulkkinen
{"title":"Substorm Signatures in the Dayside Magnetosphere","authors":"Sanjay Kumar, Tuija I. Pulkkinen","doi":"10.5194/egusphere-2024-1113","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> We investigate variations in the position of the magnetopause in response to the interplanetary magnetic field (IMF), and different phases of magnetospheric substorms. The average location of magnetopause is examined using magnetic field observations from multiple satellites (THEMIS, RBSP, and MMS), and the Shue model utilizing OMNI solar wind data for a period of five years from 2016–2020. We estimate average position of the magnetopause using Shue model through superposed epoch analysis of standoff distance and tail flaring angle at different substorm timings (onset, peak and end) and from in-situ measurements through 2D equatorial maps of average Δ <em>B<sub>Z</sub></em> under IMF |<em>B<sub>z</sub></em>|&gt; 0 conditions. Our findings reveal the occurrence of substorms during both northward and southward IMF orientations and highlight an earthward movement of the magnetopause during substorm onset and peak, followed by a relaxation during the substorm end time, for both northward and southward IMF orientations. Notably, the magnetopause undergoes significant compression and reaches its closest point to the Earth during instances of strong southward IMF (<em>B<sub>Z</sub></em> &lt; -5), particularly during the substorm peak. The empirical model provides accurate estimation of the magnetopause location during periods of both strong northward and southward IMF |<em>B<sub>z</sub></em>|&gt;5, as the model curve traverses a distinct location (Δ <em>B<sub>Z </sub></em>= 0) representing the magnetopause shown in the 2D average map of Δ <em>B<sub>Z</sub></em>.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"16 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Geophysicae","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1113","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. We investigate variations in the position of the magnetopause in response to the interplanetary magnetic field (IMF), and different phases of magnetospheric substorms. The average location of magnetopause is examined using magnetic field observations from multiple satellites (THEMIS, RBSP, and MMS), and the Shue model utilizing OMNI solar wind data for a period of five years from 2016–2020. We estimate average position of the magnetopause using Shue model through superposed epoch analysis of standoff distance and tail flaring angle at different substorm timings (onset, peak and end) and from in-situ measurements through 2D equatorial maps of average Δ BZ under IMF |Bz|> 0 conditions. Our findings reveal the occurrence of substorms during both northward and southward IMF orientations and highlight an earthward movement of the magnetopause during substorm onset and peak, followed by a relaxation during the substorm end time, for both northward and southward IMF orientations. Notably, the magnetopause undergoes significant compression and reaches its closest point to the Earth during instances of strong southward IMF (BZ < -5), particularly during the substorm peak. The empirical model provides accurate estimation of the magnetopause location during periods of both strong northward and southward IMF |Bz|>5, as the model curve traverses a distinct location (Δ BZ = 0) representing the magnetopause shown in the 2D average map of Δ BZ.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
日侧磁层中的次风暴特征
摘要我们研究了磁层顶位置随行星际磁场(IMF)和磁层亚暴不同阶段而发生的变化。我们利用多颗卫星(THEMIS、RBSP和MMS)的磁场观测数据,以及利用OMNI太阳风数据建立的Shue模型,研究了2016-2020年五年间磁层顶的平均位置。我们通过对不同亚暴时间(开始、高峰和结束)的对峙距离和尾焰角的叠加历时分析,以及通过对 IMF |Bz|> 0 条件下平均 Δ BZ 的二维赤道地图的现场测量,利用 Shue 模型估计了磁极的平均位置。我们的发现揭示了在 IMF 向北和向南的方向上都会发生亚暴,并强调了在亚暴开始和高峰期间磁层顶会向地球移动,随后在亚暴结束期间,IMF 向北和向南的方向都会出现松弛。值得注意的是,在强南向 IMF(BZ <-5)的情况下,特别是在亚暴高峰期,磁层顶会发生明显的压缩,并达到与地球的最近点。由于模型曲线穿越了一个明显的位置(Δ BZ = 0),代表了Δ BZ 的二维平均图中显示的磁极点,因此经验模型可以准确估计出强向北和强向南 IMF |Bz|>5期间的磁极点位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annales Geophysicae
Annales Geophysicae 地学-地球科学综合
CiteScore
4.30
自引率
0.00%
发文量
42
审稿时长
2 months
期刊介绍: Annales Geophysicae (ANGEO) is a not-for-profit international multi- and inter-disciplinary scientific open-access journal in the field of solar–terrestrial and planetary sciences. ANGEO publishes original articles and short communications (letters) on research of the Sun–Earth system, including the science of space weather, solar–terrestrial plasma physics, the Earth''s ionosphere and atmosphere, the magnetosphere, and the study of planets and planetary systems, the interaction between the different spheres of a planet, and the interaction across the planetary system. Topics range from space weathering, planetary magnetic field, and planetary interior and surface dynamics to the formation and evolution of planetary systems.
期刊最新文献
Low-frequency solar radio type II bursts and their association with space weather events during the ascending phase of solar cycle 25 The investigation of June 21 and 25, 2015 CMEs using EUHFORIA Observations of ionospheric disturbances associated with the 2020 Beirut explosion by Defense Meteorological Satellite Program and ground-based ionosondes On the relationship between the mesospheric sodium layer and the meteoric input function Observations of traveling ionospheric disturbances driven by gravity waves from sources in the upper and lower atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1