Finite-Time High-Probability Bounds for Polyak–Ruppert Averaged Iterates of Linear Stochastic Approximation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-16 DOI:10.1287/moor.2022.0179
Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov
{"title":"Finite-Time High-Probability Bounds for Polyak–Ruppert Averaged Iterates of Linear Stochastic Approximation","authors":"Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov","doi":"10.1287/moor.2022.0179","DOIUrl":null,"url":null,"abstract":"This paper provides a finite-time analysis of linear stochastic approximation (LSA) algorithms with fixed step size, a core method in statistics and machine learning. LSA is used to compute approximate solutions of a d-dimensional linear system [Formula: see text] for which [Formula: see text] can only be estimated by (asymptotically) unbiased observations [Formula: see text]. We consider here the case where [Formula: see text] is an a sequence of independent and identically distributed random variables sequence or a uniformly geometrically ergodic Markov chain. We derive pth moment and high-probability deviation bounds for the iterates defined by LSA and its Polyak–Ruppert-averaged version. Our finite-time instance-dependent bounds for the averaged LSA iterates are sharp in the sense that the leading term we obtain coincides with the local asymptotic minimax limit. Moreover, the remainder terms of our bounds admit a tight dependence on the mixing time [Formula: see text] of the underlying chain and the norm of the noise variables. We emphasize that our result requires the LSA step size to scale only with logarithm of the problem dimension d.Funding: The work of A. Durmus and E. Moulines was partly supported by [Grant ANR-19-CHIA-0002]. This project received funding from the European Research Council [ERC-SyG OCEAN Grant 101071601]. The research of A. Naumov and S. Samsonov was prepared within the framework of the HSE University Basic Research Program.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0179","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a finite-time analysis of linear stochastic approximation (LSA) algorithms with fixed step size, a core method in statistics and machine learning. LSA is used to compute approximate solutions of a d-dimensional linear system [Formula: see text] for which [Formula: see text] can only be estimated by (asymptotically) unbiased observations [Formula: see text]. We consider here the case where [Formula: see text] is an a sequence of independent and identically distributed random variables sequence or a uniformly geometrically ergodic Markov chain. We derive pth moment and high-probability deviation bounds for the iterates defined by LSA and its Polyak–Ruppert-averaged version. Our finite-time instance-dependent bounds for the averaged LSA iterates are sharp in the sense that the leading term we obtain coincides with the local asymptotic minimax limit. Moreover, the remainder terms of our bounds admit a tight dependence on the mixing time [Formula: see text] of the underlying chain and the norm of the noise variables. We emphasize that our result requires the LSA step size to scale only with logarithm of the problem dimension d.Funding: The work of A. Durmus and E. Moulines was partly supported by [Grant ANR-19-CHIA-0002]. This project received funding from the European Research Council [ERC-SyG OCEAN Grant 101071601]. The research of A. Naumov and S. Samsonov was prepared within the framework of the HSE University Basic Research Program.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性随机逼近的 Polyak-Ruppert 平均迭代的有限时间高概率边界
本文对具有固定步长的线性随机逼近(LSA)算法进行了有限时间分析,该算法是统计学和机器学习的核心方法。LSA 用于计算 d 维线性系统[公式:见正文]的近似解,其中[公式:见正文]只能通过(渐近)无偏观测[公式:见正文]来估计。在此,我们考虑[公式:见正文]是独立且同分布随机变量序列或均匀几何遍历马尔可夫链的情况。我们推导出 LSA 及其 Polyak-Ruppert 平均版本所定义迭代的 pth 矩和高概率偏差边界。我们得到的 LSA 平均迭代的有限时间实例相关界限是尖锐的,因为我们得到的前导项与局部渐近最小极限相吻合。此外,我们的边界余项与底层链的混合时间[公式:见正文]和噪声变量的规范有紧密联系。我们强调,我们的结果要求 LSA 步长仅与问题维度 d.Funding 的对数成比例:A. Durmus 和 E. Moulines 的工作得到了[ANR-19-CHIA-0002 号资助]的部分支持。本项目得到了欧洲研究理事会 [ERC-SyG OCEAN Grant 101071601] 的资助。A. Naumov 和 S. Samsonov 的研究是在 HSE 大学基础研究计划框架内进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1