{"title":"Turbulent Airwake Estimation from Helicopter–Ship Wind-Tunnel Data","authors":"Neda Taymourtash, Giuseppe Quaranta","doi":"10.2514/1.c037526","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a stochastic approach for modeling the turbulent airwake suitable for real-time simulation of the helicopter–ship dynamic interface. This approach relies on the measurements of unsteady loads collected during a wind-tunnel test campaign with a scaled helicopter operating over the deck of simple frigate shape 1. Power spectral densities of the measured aerodynamic loads combined with the estimated frequency response functions are used to find, through an optimization algorithm, a model of airwake spectra over the range of frequencies which mainly affects the pilot workload during shipboard operations. Then, a set of autoregressive filters is designed for every particular rotor position and wind-over-deck condition, so that when driven by white noise, the spectrum of the output will reproduce those obtained from the optimization. This approach is applied to three different tested wind directions and three rotor positions by implementing the autoregressive filters into the multibody model of the experimental rotor. Frequency response analysis of the aerodynamic loads demonstrates that the turbulent airwake model obtained from the experimental data can predict the unsteadiness of loads comparable to those measured in the wind tunnel across the bandwidth of interest for pilot activities. The identified airwake models could be applied to a full-scale model to simulate the unsteady loads effectively experienced by the helicopter during a ship landing flight.</p>","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.c037526","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a stochastic approach for modeling the turbulent airwake suitable for real-time simulation of the helicopter–ship dynamic interface. This approach relies on the measurements of unsteady loads collected during a wind-tunnel test campaign with a scaled helicopter operating over the deck of simple frigate shape 1. Power spectral densities of the measured aerodynamic loads combined with the estimated frequency response functions are used to find, through an optimization algorithm, a model of airwake spectra over the range of frequencies which mainly affects the pilot workload during shipboard operations. Then, a set of autoregressive filters is designed for every particular rotor position and wind-over-deck condition, so that when driven by white noise, the spectrum of the output will reproduce those obtained from the optimization. This approach is applied to three different tested wind directions and three rotor positions by implementing the autoregressive filters into the multibody model of the experimental rotor. Frequency response analysis of the aerodynamic loads demonstrates that the turbulent airwake model obtained from the experimental data can predict the unsteadiness of loads comparable to those measured in the wind tunnel across the bandwidth of interest for pilot activities. The identified airwake models could be applied to a full-scale model to simulate the unsteady loads effectively experienced by the helicopter during a ship landing flight.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.