Tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of the PpPGF to regulate peach softening during fruit ripening

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Molecular Biology Pub Date : 2024-04-17 DOI:10.1007/s11103-024-01429-w
Langlang Zhang, Xiaofei Wang, Kang Dong, Bin Tan, Xianbo Zheng, Xia Ye, Wei Wang, Jun Cheng, Jiancan Feng
{"title":"Tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of the PpPGF to regulate peach softening during fruit ripening","authors":"Langlang Zhang, Xiaofei Wang, Kang Dong, Bin Tan, Xianbo Zheng, Xia Ye, Wei Wang, Jun Cheng, Jiancan Feng","doi":"10.1007/s11103-024-01429-w","DOIUrl":null,"url":null,"abstract":"<p>Peach fruit rapidly soften after harvest, a significant challenge for producers and marketers as it results in rotting fruit and significantly reduces shelf life. In this study, we identified two tandem genes, <i>PpNAC1</i> and <i>PpNAC5</i>, within the <i>sr</i> (slow ripening) locus. Phylogenetic analysis showed that <i>NAC1</i> and <i>NAC5</i> are highly conserved in dicots and that <i>PpNAC1</i> is the orthologous gene of <i>Non-ripening</i> (<i>NOR</i>) in tomato. <i>PpNAC1</i> and <i>PpNAC5</i> were highly expressed in peach fruit, with their transcript levels up-regulated at the onset of ripening. Yeast two-hybrid and bimolecular fluorescence complementation assays showed PpNAC1 interacting with PpNAC5 and this interaction occurs with the tomato and apple orthologues. Transient gene silencing experiments showed that <i>PpNAC1</i> and <i>PpNAC5</i> positively regulate peach fruit softening. Yeast one-hybrid and dual luciferase assays and LUC bioluminescence imaging proved that PpNAC1 and PpNAC5 directly bind to the <i>PpPGF</i> promoter and activate its transcription. Co-expression of PpNAC1 and PpNAC5 showed higher levels of <i>PpPGF</i> activation than expression of PpNAC1 or PpNAC5 alone. In summary, our findings demonstrate that the tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of <i>PpPGF</i> to regulate fruit softening during peach fruit ripening.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01429-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peach fruit rapidly soften after harvest, a significant challenge for producers and marketers as it results in rotting fruit and significantly reduces shelf life. In this study, we identified two tandem genes, PpNAC1 and PpNAC5, within the sr (slow ripening) locus. Phylogenetic analysis showed that NAC1 and NAC5 are highly conserved in dicots and that PpNAC1 is the orthologous gene of Non-ripening (NOR) in tomato. PpNAC1 and PpNAC5 were highly expressed in peach fruit, with their transcript levels up-regulated at the onset of ripening. Yeast two-hybrid and bimolecular fluorescence complementation assays showed PpNAC1 interacting with PpNAC5 and this interaction occurs with the tomato and apple orthologues. Transient gene silencing experiments showed that PpNAC1 and PpNAC5 positively regulate peach fruit softening. Yeast one-hybrid and dual luciferase assays and LUC bioluminescence imaging proved that PpNAC1 and PpNAC5 directly bind to the PpPGF promoter and activate its transcription. Co-expression of PpNAC1 and PpNAC5 showed higher levels of PpPGF activation than expression of PpNAC1 or PpNAC5 alone. In summary, our findings demonstrate that the tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of PpPGF to regulate fruit softening during peach fruit ripening.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
串联转录因子 PpNAC1 和 PpNAC5 协同激活 PpPGF 的转录,以调控桃在果实成熟期的软化过程
桃子果实在收获后会迅速变软,这对生产商和销售商来说是一个重大挑战,因为这会导致果实腐烂,大大缩短货架期。在这项研究中,我们在 sr(慢熟)基因座中发现了两个串联基因 PpNAC1 和 PpNAC5。系统发育分析表明,NAC1 和 NAC5 在双子叶植物中高度保守,而 PpNAC1 是番茄非成熟(NOR)基因的直向同源基因。PpNAC1 和 PpNAC5 在桃果实中高度表达,其转录水平在果实开始成熟时上调。酵母双杂交和双分子荧光互补实验表明,PpNAC1 与 PpNAC5 相互作用,而且这种作用发生在番茄和苹果的直向同源物上。瞬时基因沉默实验表明,PpNAC1 和 PpNAC5 对桃果实软化有正向调节作用。酵母单杂交和双荧光素酶测定以及 LUC 生物发光成像证明,PpNAC1 和 PpNAC5 直接与 PpPGF 启动子结合并激活其转录。与单独表达 PpNAC1 或 PpNAC5 相比,共同表达 PpNAC1 和 PpNAC5 能显示更高水平的 PpPGF 激活。总之,我们的研究结果表明,串联转录因子 PpNAC1 和 PpNAC5 能协同激活 PpPGF 的转录,从而调节桃果实成熟过程中的果实软化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
期刊最新文献
A new Bowman-Birk type protease inhibitor regulated by MeJA pathway in maize exhibits anti-feedant activity against the Ostrinia furnacalis. Highly divergent satellitomes of two barley species of agronomic importance, Hordeum chilense and H. vulgare. Improving organoleptic and antioxidant properties by inhibition of novel miRstv_7 to target key genes of steviol glycosides biosynthetic pathway in Stevia rebaudiana Bertoni. Low-dose 60Co-γ-ray irradiation promotes the growth of cucumber seedlings by inducing CsSAUR37 expression. Genome‑wide analysis of the GT8 gene family in apple and functional identification of MhGolS2 in saline-alkali tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1