Impedance control for force tracking of a dual-arm cooperative robot based on particle swarm optimization

Li Li, Tong Huang, Chujia Pan, J.F. Pan, Wenbin Su
{"title":"Impedance control for force tracking of a dual-arm cooperative robot based on particle swarm optimization","authors":"Li Li, Tong Huang, Chujia Pan, J.F. Pan, Wenbin Su","doi":"10.1108/ir-10-2023-0247","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the dual-arm robot is directly in contact with external environment, controlling the mutual force between robot and external environment is of great importance. Besides, a high compliance of the robot should be guaranteed.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>An impedance control based on Particle Swarm Optimization (PSO) algorithm is designed to track the mutual force and achieve compliance control of the robot end.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The experimental results show that the impedance control coefficients can be automatically tuned converged by PSO algorithm.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The system can reach a steady state within 0.03 s with overshoot convergence, and the force fluctuation range at the steady state decreases to about ±0.08 N even under the force mutation condition.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-10-2023-0247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the dual-arm robot is directly in contact with external environment, controlling the mutual force between robot and external environment is of great importance. Besides, a high compliance of the robot should be guaranteed.

Design/methodology/approach

An impedance control based on Particle Swarm Optimization (PSO) algorithm is designed to track the mutual force and achieve compliance control of the robot end.

Findings

The experimental results show that the impedance control coefficients can be automatically tuned converged by PSO algorithm.

Originality/value

The system can reach a steady state within 0.03 s with overshoot convergence, and the force fluctuation range at the steady state decreases to about ±0.08 N even under the force mutation condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化的双臂合作机器人力跟踪阻抗控制
目的 本文旨在研究用于双臂合作机器人力跟踪的自适应阻抗控制及其优化 PSO 算法。由于双臂机器人直接与外部环境接触,因此控制机器人与外部环境之间的相互作用力非常重要。设计/方法/途径设计了一种基于粒子群优化(PSO)算法的阻抗控制来跟踪机器人末端的互力并实现机器人末端的顺应性控制。原创性/价值该系统可在 0.03 s 内达到稳定状态,并具有超调收敛性,即使在力突变条件下,稳定状态下的力波动范围也可减小到约±0.08 N。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model optimization and acceleration method based on meta-learning and model pruning for laser vision weld tracking system High-performance foot trajectory tracking control of hydraulic legged robots based on fixed-time disturbance observers Design of a multi-manipulator robot for relieving welding residual stress An online error compensation strategy for hybrid robot based on grating feedback YLS-SLAM: a real-time dynamic visual SLAM based on semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1