Comparative analysis of surface deformation monitoring in a mining area based on UAV‐lidar and UAV photogrammetry

Xilin Zhan, Xingzhong Zhang, Xiao Wang, Xinpeng Diao, Lizhuan Qi
{"title":"Comparative analysis of surface deformation monitoring in a mining area based on UAV‐lidar and UAV photogrammetry","authors":"Xilin Zhan, Xingzhong Zhang, Xiao Wang, Xinpeng Diao, Lizhuan Qi","doi":"10.1111/phor.12490","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle light detection and ranging (UAV‐lidar) and unmanned aerial vehicle (UAV) photogrammetry are currently commonly used surface monitoring technologies. Previous studies have used the two technologies interchangeably and ignored their correlation, or only compared them on a single product. However, there are few quantitative assessments of the differences between these two techniques in monitoring surface deformation and prediction of their application prospects. Therefore, the paper compared the differences between the digital elevation model (DEM) and subsidence basins obtained by the two techniques using Gaussian analysis. The results indicate that the surface DEMs obtained by both the techniques exhibit a high degree of similarity. The statistical analysis of the difference values in the <jats:italic>z</jats:italic> direction between the two DEMs follows a Gaussian distribution with a standard deviation of less than 0.36 m. When comparing the surface subsidence values monitored by the two techniques, it was found that UAV‐lidar was more sensitive to small‐scale deformation, with a difference range of 0.23–0.44 m compared to photogrammetry. The conclusion provides valuable information regarding the utilisation of multisource monitoring data.","PeriodicalId":22881,"journal":{"name":"The Photogrammetric Record","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Photogrammetric Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/phor.12490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicle light detection and ranging (UAV‐lidar) and unmanned aerial vehicle (UAV) photogrammetry are currently commonly used surface monitoring technologies. Previous studies have used the two technologies interchangeably and ignored their correlation, or only compared them on a single product. However, there are few quantitative assessments of the differences between these two techniques in monitoring surface deformation and prediction of their application prospects. Therefore, the paper compared the differences between the digital elevation model (DEM) and subsidence basins obtained by the two techniques using Gaussian analysis. The results indicate that the surface DEMs obtained by both the techniques exhibit a high degree of similarity. The statistical analysis of the difference values in the z direction between the two DEMs follows a Gaussian distribution with a standard deviation of less than 0.36 m. When comparing the surface subsidence values monitored by the two techniques, it was found that UAV‐lidar was more sensitive to small‐scale deformation, with a difference range of 0.23–0.44 m compared to photogrammetry. The conclusion provides valuable information regarding the utilisation of multisource monitoring data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无人机激光雷达和无人机摄影测量的矿区地表变形监测对比分析
无人飞行器光探测与测距(UAV-lidar)和无人飞行器摄影测量是目前常用的地表监测技术。以往的研究将这两种技术交替使用,忽略了它们之间的相关性,或者只在单一产品上对它们进行比较。然而,对于这两种技术在监测地表变形方面的差异和应用前景的预测,却鲜有定量评估。因此,本文利用高斯分析法比较了两种技术获得的数字高程模型(DEM)和沉降盆地之间的差异。结果表明,两种技术获得的地表 DEM 具有高度相似性。在对两种技术监测到的地表沉降值进行比较时发现,与摄影测量法相比,无人机激光雷达对小尺度变形更为敏感,差值范围为 0.23-0.44 米。这一结论为利用多源监测数据提供了有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
59th Photogrammetric Week: Advancement in photogrammetry, remote sensing and Geoinformatics Obituary for Prof. Dr.‐Ing. Dr. h.c. mult. Gottfried Konecny Topographic mapping from space dedicated to Dr. Karsten Jacobsen’s 80th birthday Frontispiece: Comparison of 3D models with texture before and after restoration ISPRS TC IV Mid‐Term Symposium: Spatial information to empower the Metaverse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1