Space-time modulated loaded-wire metagratings for magnetless nonreciprocity and near-complete frequency conversion

IF 2.8 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Optical Materials Express Pub Date : 2024-04-17 DOI:10.1364/ome.515628
Yakir Hadad and Dimitrios Sounas
{"title":"Space-time modulated loaded-wire metagratings for magnetless nonreciprocity and near-complete frequency conversion","authors":"Yakir Hadad and Dimitrios Sounas","doi":"10.1364/ome.515628","DOIUrl":null,"url":null,"abstract":"In recent years, significant progress has been made in the development of magnet-less nonreciprocity using space-time modulation, both in electromagnetics and acoustics. This approach has so far resulted in a plethora of non-reciprocal devices, such as isolators and circulators, over different parts of the spectrum, for guided waves. On the other hand, very little work has been performed on non-reciprocal devices for waves propagating in free space, which can also have many practical applications. For example, it was shown theoretically that non-reciprocal scattering by a metasurface can be obtained if the surface-impedance operator is continuously modulated in space and time. However, the main challenge in the realization of such a metasurface is due to the high complexity required to modulate in space and time many sub-wavelength unit-cells of which the metasurface consists. In this paper, we show that spatiotemporally modulated metagratings can lead to strong nonreciprocal responses, even though they are based on electrically-large unit cells and use only three modulation domains. We specifically focus on wire metagratings loaded with time-modulated capacitances. We use the discrete-dipole approximation and an ad-hoc generalization of the theory of polarizability for time-modulated particles and demonstrate an effective non-reciprocal anomalous reflection (diffraction) with an efficient frequency conversion. Thus, our work opens a venue for a practical design and implementation of highly non-reciprocal magnet-less metasurfaces in electromagnetics and acoustics.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"21 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.515628","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, significant progress has been made in the development of magnet-less nonreciprocity using space-time modulation, both in electromagnetics and acoustics. This approach has so far resulted in a plethora of non-reciprocal devices, such as isolators and circulators, over different parts of the spectrum, for guided waves. On the other hand, very little work has been performed on non-reciprocal devices for waves propagating in free space, which can also have many practical applications. For example, it was shown theoretically that non-reciprocal scattering by a metasurface can be obtained if the surface-impedance operator is continuously modulated in space and time. However, the main challenge in the realization of such a metasurface is due to the high complexity required to modulate in space and time many sub-wavelength unit-cells of which the metasurface consists. In this paper, we show that spatiotemporally modulated metagratings can lead to strong nonreciprocal responses, even though they are based on electrically-large unit cells and use only three modulation domains. We specifically focus on wire metagratings loaded with time-modulated capacitances. We use the discrete-dipole approximation and an ad-hoc generalization of the theory of polarizability for time-modulated particles and demonstrate an effective non-reciprocal anomalous reflection (diffraction) with an efficient frequency conversion. Thus, our work opens a venue for a practical design and implementation of highly non-reciprocal magnet-less metasurfaces in electromagnetics and acoustics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无磁非互斥性和近乎完全频率转换的时空调制加载线元规
近年来,电磁学和声学在利用时空调制开发无磁非互易性方面取得了重大进展。迄今为止,这种方法已经产生了大量的非互易设备,如隔离器和环行器,适用于频谱的不同部分和导波。另一方面,针对在自由空间传播的波的非互易器件的研究却很少,而这种器件也有许多实际应用。例如,有理论表明,如果表面阻抗算子在空间和时间上连续调制,就能获得元表面的非互易散射。然而,实现这种元表面的主要挑战在于在空间和时间上调制元表面所包含的许多子波长单元所需的高复杂性。在本文中,我们展示了时空调制元表面可以产生强烈的非互惠响应,尽管它们是基于电性大单元并只使用了三个调制域。我们特别关注加载了时间调制电容的导线元规。我们使用离散偶极子近似和时间调制粒子极化理论的临时概括,证明了一种有效的非对等反常反射(衍射)和高效的频率转换。因此,我们的工作为电磁学和声学中高度非互易无磁元表面的实际设计和实施开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Materials Express
Optical Materials Express MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
5.50
自引率
3.60%
发文量
377
审稿时长
1.5 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to: Artificially engineered optical structures Biomaterials Optical detector materials Optical storage media Materials for integrated optics Nonlinear optical materials Laser materials Metamaterials Nanomaterials Organics and polymers Soft materials IR materials Materials for fiber optics Hybrid technologies Materials for quantum photonics Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.
期刊最新文献
2023 Optical Materials Express Emerging Researcher Best Paper Prize: editorial Enhanced p-type conductivity of hexagonal boron nitride by an efficient two-step doping strategy On the thermal stability of multilayer optics for use with high X-ray intensities Femtosecond laser synthesis of YAG:Ce3+ nanoparticles in liquid Silicon nanohole based enhanced light absorbers for thin film solar cell applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1