U–Pb Ages and Whole-Rock and Zircon Geochemistry of Granitoids from the Zhireken Mo-Porphyry Deposit, Eastern Transbaikalia: New Insights into the Link to Mineralization
{"title":"U–Pb Ages and Whole-Rock and Zircon Geochemistry of Granitoids from the Zhireken Mo-Porphyry Deposit, Eastern Transbaikalia: New Insights into the Link to Mineralization","authors":"T. V. Svetlitskaya, P. A. Nevolko","doi":"10.1134/s1075701524010069","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The Zhireken Mo-porphyry deposit is located within the West Stanovoi terrane of the Transbaikalia sector of the Mongol–Okhotsk orogenic belt and is linked to the Middle–Late Jurassic Zhireken composite intrusion. Despite the long-term history of exploration of the deposit, many issues regarding magmatism and ore mineralization remain undetermined. In particular, the ore-producing granitoid intrusion that is genetically related to the deposit formation has not yet been identified. The study provides new U–Pb LA-ICP-MS zircon ages and geochemical whole-rock and zircon compositions obtained for igneous rocks of the Zhireken deposit. The research shows that the deposit is spatially associated with a series of high-K calc-alkaline to shoshonitic I-type granitoid intrusions that were emplaced at around 158–166 Ma at the postcollision stage of the evolution of the Mongol–Okhotsk Ocean. The sequence of the intrusive events includes biotite leucogranite (U–Pb age of ca. 164–166 Ma) → biotite–amphibole granite and granodiorite (U–Pb age of ca. 161–163 Ma) → dikes of granite-porphyry (U–Pb age of ca. 162–163 Ma), leucogranite-porphyry, and (quartz) diorite-porphyry → dikes of quartz monzonite-porphyry (U–Pb age of ca. 158 Ma). The U–Pb dates obtained and the observed geological relationships between granitoids and ore mineralization suggest that the emplacement of an ore-causative granite intrusion and the formation of porphyry-Mo stockwork system at the Zhireken deposit occurred in the interval of a. 158–161 Ma. A thorough examination employing geochemical whole-rock and mineral (zircon) fertility indicators reveals no genetic link between the studied granitoids and porphyry mineralization since they are all generated from weakly oxidized magmas. The ore-causative granitoid intrusion genetically related to Mo mineralization at the Zhireken deposit is either buried or represented by a rock type that is out of focus in both the present and previous studies.</p>","PeriodicalId":12719,"journal":{"name":"Geology of Ore Deposits","volume":"251 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology of Ore Deposits","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s1075701524010069","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Zhireken Mo-porphyry deposit is located within the West Stanovoi terrane of the Transbaikalia sector of the Mongol–Okhotsk orogenic belt and is linked to the Middle–Late Jurassic Zhireken composite intrusion. Despite the long-term history of exploration of the deposit, many issues regarding magmatism and ore mineralization remain undetermined. In particular, the ore-producing granitoid intrusion that is genetically related to the deposit formation has not yet been identified. The study provides new U–Pb LA-ICP-MS zircon ages and geochemical whole-rock and zircon compositions obtained for igneous rocks of the Zhireken deposit. The research shows that the deposit is spatially associated with a series of high-K calc-alkaline to shoshonitic I-type granitoid intrusions that were emplaced at around 158–166 Ma at the postcollision stage of the evolution of the Mongol–Okhotsk Ocean. The sequence of the intrusive events includes biotite leucogranite (U–Pb age of ca. 164–166 Ma) → biotite–amphibole granite and granodiorite (U–Pb age of ca. 161–163 Ma) → dikes of granite-porphyry (U–Pb age of ca. 162–163 Ma), leucogranite-porphyry, and (quartz) diorite-porphyry → dikes of quartz monzonite-porphyry (U–Pb age of ca. 158 Ma). The U–Pb dates obtained and the observed geological relationships between granitoids and ore mineralization suggest that the emplacement of an ore-causative granite intrusion and the formation of porphyry-Mo stockwork system at the Zhireken deposit occurred in the interval of a. 158–161 Ma. A thorough examination employing geochemical whole-rock and mineral (zircon) fertility indicators reveals no genetic link between the studied granitoids and porphyry mineralization since they are all generated from weakly oxidized magmas. The ore-causative granitoid intrusion genetically related to Mo mineralization at the Zhireken deposit is either buried or represented by a rock type that is out of focus in both the present and previous studies.
期刊介绍:
Geology of Ore Deposits is a periodical covering the topic of metallic and nonmetallic mineral deposits, their formation conditions, and spatial and temporal distribution. The journal publishes original scientific articles and reviews on a wide range of problems in theoretical and applied geology. The journal focuses on the following problems: deep geological structure and geodynamic environment of ore formation; distribution pattern of metallogenic zones and mineral deposits; geology and formation environment of large and unique metallic and nonmetallic deposits; mineralogy of metallic and nonmetallic deposits; physicochemical and isotopic characteristics and geochemical environment of ore deposition; evolution of ore-forming systems; radiogeology and radioecology, economic problems in exploring, developing, and mining of ore commodities.