Paired Electrosynthesis at Interdigitated Microband Electrodes: Exploring Diffusion and Reaction Zones in the Absence of a Supporting Electrolyte

IF 4.6 Q1 CHEMISTRY, ANALYTICAL ACS Measurement Science Au Pub Date : 2024-04-17 DOI:10.1021/acsmeasuresciau.4c00009
Tingran Liu, Evaldo Batista Carneiro-Neto, Ernesto Pereira, James E. Taylor, Philip J. Fletcher and Frank Marken*, 
{"title":"Paired Electrosynthesis at Interdigitated Microband Electrodes: Exploring Diffusion and Reaction Zones in the Absence of a Supporting Electrolyte","authors":"Tingran Liu,&nbsp;Evaldo Batista Carneiro-Neto,&nbsp;Ernesto Pereira,&nbsp;James E. Taylor,&nbsp;Philip J. Fletcher and Frank Marken*,&nbsp;","doi":"10.1021/acsmeasuresciau.4c00009","DOIUrl":null,"url":null,"abstract":"<p >Electrosynthesis traditionally requires dedicated reactor systems and an added electrolyte, although some paired electrosynthesis processes are possible at interdigitated microband electrodes simply immersed in solution and without an intentionally added electrolyte. Here, 1,1′-ferrocenedimethanol oxidation and activated olefin electro-hydrogenation reactions are investigated as model processes at a Pt–Pt interdigitated microband array electrode with 5 μm width and with 5 μm interelectrode gap. Voltammetric responses for electro-hydrogenation are discussed, and product yields are determined in methanol (MeOH) in the presence/absence of an added electrolyte (LiClO<sub>4</sub>). An isotope effect is observed in CH<sub>3</sub>OD solvent, leading to olefin monodeuteration linked to a fast EC-type process close to the cathode surface (in the cathode reaction zone) rather than to charge annihilation in the interelectrode zone. A finite element simulation is employed to visualize/discuss reaction zones and to contrast the rate of charge annihilation processes with/without a supporting electrolyte.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 3","pages":"294–306"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrosynthesis traditionally requires dedicated reactor systems and an added electrolyte, although some paired electrosynthesis processes are possible at interdigitated microband electrodes simply immersed in solution and without an intentionally added electrolyte. Here, 1,1′-ferrocenedimethanol oxidation and activated olefin electro-hydrogenation reactions are investigated as model processes at a Pt–Pt interdigitated microband array electrode with 5 μm width and with 5 μm interelectrode gap. Voltammetric responses for electro-hydrogenation are discussed, and product yields are determined in methanol (MeOH) in the presence/absence of an added electrolyte (LiClO4). An isotope effect is observed in CH3OD solvent, leading to olefin monodeuteration linked to a fast EC-type process close to the cathode surface (in the cathode reaction zone) rather than to charge annihilation in the interelectrode zone. A finite element simulation is employed to visualize/discuss reaction zones and to contrast the rate of charge annihilation processes with/without a supporting electrolyte.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交织微带电极上的配对电合成:探索无支撑电解质时的扩散和反应区
电合成传统上需要专用的反应器系统和添加的电解液,但在仅仅浸入溶液中而不刻意添加电解液的交错微带电极上也可以进行一些成对的电合成过程。本文以 1,1′-二茂铁甲醇氧化反应和活化烯烃电加氢反应为模型,研究了在宽度为 5 μm、电极间隙为 5 μm 的铂-铂交错微带阵列电极上的反应过程。讨论了电加氢的伏安反应,并测定了在有/无添加电解质(LiClO4)的甲醇(MeOH)中的产物产率。在 CH3OD 溶剂中观察到同位素效应,导致烯烃单脱氢与靠近阴极表面(阴极反应区)的快速 EC 型过程有关,而不是与电极内区的电荷湮灭有关。采用有限元模拟来直观显示/讨论反应区,并对比有/无支撑电解质的电荷湮灭过程的速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Development of Simple and Rapid Bead-Based Cytometric Immunoassays Using Superparamagnetic Hybrid Core–Shell Microparticles Colorimetric Hybridization Sensor for DNA Mimic of a SARS-CoV-2 RNA Marker: Direct and Inverse Bioanalysis Super-Resolution Microscopic Imaging of Lipid Droplets in Living Cells via Carbonized Polymer Dot-Based Polarity-Responsive Nanoprobe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1