Learning spiking neuronal networks with artificial neural networks: neural oscillations

IF 2.2 4区 数学 Q2 BIOLOGY Journal of Mathematical Biology Pub Date : 2024-04-17 DOI:10.1007/s00285-024-02081-0
Ruilin Zhang, Zhongyi Wang, Tianyi Wu, Yuhang Cai, Louis Tao, Zhuo-Cheng Xiao, Yao Li
{"title":"Learning spiking neuronal networks with artificial neural networks: neural oscillations","authors":"Ruilin Zhang, Zhongyi Wang, Tianyi Wu, Yuhang Cai, Louis Tao, Zhuo-Cheng Xiao, Yao Li","doi":"10.1007/s00285-024-02081-0","DOIUrl":null,"url":null,"abstract":"<p>First-principles-based modelings have been extremely successful in providing crucial insights and predictions for complex biological functions and phenomena. However, they can be hard to build and expensive to simulate for complex living systems. On the other hand, modern data-driven methods thrive at modeling many types of high-dimensional and noisy data. Still, the training and interpretation of these data-driven models remain challenging. Here, we combine the two types of methods to model stochastic neuronal network oscillations. Specifically, we develop a class of artificial neural networks to provide faithful surrogates to the high-dimensional, nonlinear oscillatory dynamics produced by a spiking neuronal network model. Furthermore, when the training data set is enlarged within a range of parameter choices, the artificial neural networks become generalizable to these parameters, covering cases in distinctly different dynamical regimes. In all, our work opens a new avenue for modeling complex neuronal network dynamics with artificial neural networks.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"210 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02081-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

First-principles-based modelings have been extremely successful in providing crucial insights and predictions for complex biological functions and phenomena. However, they can be hard to build and expensive to simulate for complex living systems. On the other hand, modern data-driven methods thrive at modeling many types of high-dimensional and noisy data. Still, the training and interpretation of these data-driven models remain challenging. Here, we combine the two types of methods to model stochastic neuronal network oscillations. Specifically, we develop a class of artificial neural networks to provide faithful surrogates to the high-dimensional, nonlinear oscillatory dynamics produced by a spiking neuronal network model. Furthermore, when the training data set is enlarged within a range of parameter choices, the artificial neural networks become generalizable to these parameters, covering cases in distinctly different dynamical regimes. In all, our work opens a new avenue for modeling complex neuronal network dynamics with artificial neural networks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用人工神经网络学习尖峰神经元网络:神经振荡
基于第一原理的建模非常成功,为复杂的生物功能和现象提供了重要的见解和预测。然而,对于复杂的生命系统来说,这些模型可能难以建立,而且模拟成本高昂。另一方面,现代数据驱动方法在对多种类型的高维和高噪声数据建模方面表现出色。然而,这些数据驱动模型的训练和解释仍然具有挑战性。在这里,我们将这两类方法结合起来,对随机神经元网络振荡进行建模。具体来说,我们开发了一类人工神经网络,为尖峰神经元网络模型产生的高维非线性振荡动力学提供忠实的替代物。此外,当训练数据集在一定的参数选择范围内扩大时,人工神经网络对这些参数具有通用性,可涵盖明显不同的动力学状态。总之,我们的工作为利用人工神经网络建立复杂神经元网络动力学模型开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
期刊最新文献
A spatial multiscale mathematical model of Plasmodium vivax transmission. Age-structured modeling of COVID-19 dynamics: the role of treatment and vaccination in controlling the pandemic. Duration of transients in outbreaks: when can infectiousness be estimated? Optimal vaccination policy to prevent endemicity: a stochastic model. Model-based conceptualization of thyroid hormone equilibrium via set point and stability behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1