Wenhao Zhong , Heye Zhang , Zhifan Gao , William Kongto Hau , Guang Yang , Xiujian Liu , Lin Xu
{"title":"Distraction-aware hierarchical learning for vascular structure segmentation in intravascular ultrasound images","authors":"Wenhao Zhong , Heye Zhang , Zhifan Gao , William Kongto Hau , Guang Yang , Xiujian Liu , Lin Xu","doi":"10.1016/j.compmedimag.2024.102381","DOIUrl":null,"url":null,"abstract":"<div><p>Vascular structure segmentation in intravascular ultrasound (IVUS) images plays an important role in pre-procedural evaluation of percutaneous coronary intervention (PCI). However, vascular structure segmentation in IVUS images has the challenge of structure-dependent distractions. Structure-dependent distractions are categorized into two cases, structural intrinsic distractions and inter-structural distractions. Traditional machine learning methods often rely solely on low-level features, overlooking high-level features. This way limits the generalization of these methods. The existing semantic segmentation methods integrate low-level and high-level features to enhance generalization performance. But these methods also introduce additional interference, which is harmful to solving structural intrinsic distractions. Distraction cue methods attempt to address structural intrinsic distractions by removing interference from the features through a unique decoder. However, they tend to overlook the problem of inter-structural distractions. In this paper, we propose distraction-aware hierarchical learning (DHL) for vascular structure segmentation in IVUS images. Inspired by distraction cue methods for removing interference in a decoder, the DHL is designed as a hierarchical decoder that gradually removes structure-dependent distractions. The DHL includes global perception process, distraction perception process and structural perception process. The global perception process and distraction perception process remove structural intrinsic distractions then the structural perception process removes inter-structural distractions. In the global perception process, the DHL searches for the coarse structural region of the vascular structures on the slice of IVUS sequence. In the distraction perception process, the DHL progressively refines the coarse structural region of the vascular structures to remove structural distractions. In the structural perception process, the DHL detects regions of inter-structural distractions in fused structure features then separates them. Extensive experiments on 361 subjects show that the DHL is effective (e.g., the average Dice is greater than 0.95), and superior to ten state-of-the-art IVUS vascular structure segmentation methods.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102381"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000582","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular structure segmentation in intravascular ultrasound (IVUS) images plays an important role in pre-procedural evaluation of percutaneous coronary intervention (PCI). However, vascular structure segmentation in IVUS images has the challenge of structure-dependent distractions. Structure-dependent distractions are categorized into two cases, structural intrinsic distractions and inter-structural distractions. Traditional machine learning methods often rely solely on low-level features, overlooking high-level features. This way limits the generalization of these methods. The existing semantic segmentation methods integrate low-level and high-level features to enhance generalization performance. But these methods also introduce additional interference, which is harmful to solving structural intrinsic distractions. Distraction cue methods attempt to address structural intrinsic distractions by removing interference from the features through a unique decoder. However, they tend to overlook the problem of inter-structural distractions. In this paper, we propose distraction-aware hierarchical learning (DHL) for vascular structure segmentation in IVUS images. Inspired by distraction cue methods for removing interference in a decoder, the DHL is designed as a hierarchical decoder that gradually removes structure-dependent distractions. The DHL includes global perception process, distraction perception process and structural perception process. The global perception process and distraction perception process remove structural intrinsic distractions then the structural perception process removes inter-structural distractions. In the global perception process, the DHL searches for the coarse structural region of the vascular structures on the slice of IVUS sequence. In the distraction perception process, the DHL progressively refines the coarse structural region of the vascular structures to remove structural distractions. In the structural perception process, the DHL detects regions of inter-structural distractions in fused structure features then separates them. Extensive experiments on 361 subjects show that the DHL is effective (e.g., the average Dice is greater than 0.95), and superior to ten state-of-the-art IVUS vascular structure segmentation methods.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.