{"title":"A pragma based C++ framework for hybrid quantum/classical computation","authors":"Arnaud Gazda , Océane Koska","doi":"10.1016/j.scico.2024.103119","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum computers promise exponential speed ups over classical computers for various tasks. This emerging technology is expected to have its first huge impact in High Performance Computing (HPC), as it can solve problems beyond the reach of HPC. To that end, HPC will require quantum accelerators, which will enable applications to run on both classical and quantum devices, via hybrid quantum-classical nodes. Hybrid quantum-HPC applications should be scalable, executable on Quantum Error Corrected (QEC) devices, and could use quantum-classical primitives. However, the lack of scalability, poor performances, and inability to insert classical schemes within quantum applications has prevented current quantum frameworks from being adopted by the HPC community.</p><p>This paper specifies the requirements of a hybrid quantum-classical framework compatible with HPC environments, and introduces a novel hardware-agnostic framework called Q-Pragma. This framework extends the classical programming language C++ heavily used in HPC via the addition of pragma directives to manage quantum computations.</p></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"236 ","pages":"Article 103119"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016764232400042X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum computers promise exponential speed ups over classical computers for various tasks. This emerging technology is expected to have its first huge impact in High Performance Computing (HPC), as it can solve problems beyond the reach of HPC. To that end, HPC will require quantum accelerators, which will enable applications to run on both classical and quantum devices, via hybrid quantum-classical nodes. Hybrid quantum-HPC applications should be scalable, executable on Quantum Error Corrected (QEC) devices, and could use quantum-classical primitives. However, the lack of scalability, poor performances, and inability to insert classical schemes within quantum applications has prevented current quantum frameworks from being adopted by the HPC community.
This paper specifies the requirements of a hybrid quantum-classical framework compatible with HPC environments, and introduces a novel hardware-agnostic framework called Q-Pragma. This framework extends the classical programming language C++ heavily used in HPC via the addition of pragma directives to manage quantum computations.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.