A pragma based C++ framework for hybrid quantum/classical computation

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Science of Computer Programming Pub Date : 2024-04-10 DOI:10.1016/j.scico.2024.103119
Arnaud Gazda , Océane Koska
{"title":"A pragma based C++ framework for hybrid quantum/classical computation","authors":"Arnaud Gazda ,&nbsp;Océane Koska","doi":"10.1016/j.scico.2024.103119","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum computers promise exponential speed ups over classical computers for various tasks. This emerging technology is expected to have its first huge impact in High Performance Computing (HPC), as it can solve problems beyond the reach of HPC. To that end, HPC will require quantum accelerators, which will enable applications to run on both classical and quantum devices, via hybrid quantum-classical nodes. Hybrid quantum-HPC applications should be scalable, executable on Quantum Error Corrected (QEC) devices, and could use quantum-classical primitives. However, the lack of scalability, poor performances, and inability to insert classical schemes within quantum applications has prevented current quantum frameworks from being adopted by the HPC community.</p><p>This paper specifies the requirements of a hybrid quantum-classical framework compatible with HPC environments, and introduces a novel hardware-agnostic framework called Q-Pragma. This framework extends the classical programming language C++ heavily used in HPC via the addition of pragma directives to manage quantum computations.</p></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"236 ","pages":"Article 103119"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016764232400042X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computers promise exponential speed ups over classical computers for various tasks. This emerging technology is expected to have its first huge impact in High Performance Computing (HPC), as it can solve problems beyond the reach of HPC. To that end, HPC will require quantum accelerators, which will enable applications to run on both classical and quantum devices, via hybrid quantum-classical nodes. Hybrid quantum-HPC applications should be scalable, executable on Quantum Error Corrected (QEC) devices, and could use quantum-classical primitives. However, the lack of scalability, poor performances, and inability to insert classical schemes within quantum applications has prevented current quantum frameworks from being adopted by the HPC community.

This paper specifies the requirements of a hybrid quantum-classical framework compatible with HPC environments, and introduces a novel hardware-agnostic framework called Q-Pragma. This framework extends the classical programming language C++ heavily used in HPC via the addition of pragma directives to manage quantum computations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于实用程序的量子/经典混合计算 C++ 框架
量子计算机有望在各种任务中以指数级速度超越传统计算机。这项新兴技术有望首次对高性能计算(HPC)产生巨大影响,因为它可以解决 HPC 无法解决的问题。为此,高性能计算将需要量子加速器,通过量子-经典混合节点,使应用既能在经典设备上运行,也能在量子设备上运行。混合量子高性能计算应用应具有可扩展性,可在量子纠错(QEC)设备上执行,并可使用量子经典基元。然而,由于缺乏可扩展性、性能不佳以及无法在量子应用中插入经典方案,目前的量子框架无法被 HPC 社区采用。本文明确了与 HPC 环境兼容的混合量子-经典框架的要求,并介绍了一种名为 Q-Pragma 的新型硬件无关框架。该框架通过添加pragma指令来管理量子计算,从而扩展了HPC中大量使用的经典编程语言C++。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of Computer Programming
Science of Computer Programming 工程技术-计算机:软件工程
CiteScore
3.80
自引率
0.00%
发文量
76
审稿时长
67 days
期刊介绍: Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design. The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice. The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including • Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software; • Design, implementation and evaluation of programming languages; • Programming environments, development tools, visualisation and animation; • Management of the development process; • Human factors in software, software for social interaction, software for social computing; • Cyber physical systems, and software for the interaction between the physical and the machine; • Software aspects of infrastructure services, system administration, and network management.
期刊最新文献
Editorial Board Analysis and formal specification of OpenJDK's BitSet: Proof files Parametric ontologies in formal software engineering CAN-Verify: Automated analysis for BDI agents Efficient interaction-based offline runtime verification of distributed systems with lifeline removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1