Mia Moore , Yifan Zhu , Ian Hirsch , Tom White , Robert C. Reiner , Ryan M. Barber , David Pigott , James K. Collins , Serena Santoni , Magdalena E. Sobieszczyk , Holly Janes
{"title":"Estimating vaccine efficacy during open-label follow-up of COVID-19 vaccine trials based on population-level surveillance data","authors":"Mia Moore , Yifan Zhu , Ian Hirsch , Tom White , Robert C. Reiner , Ryan M. Barber , David Pigott , James K. Collins , Serena Santoni , Magdalena E. Sobieszczyk , Holly Janes","doi":"10.1016/j.epidem.2024.100768","DOIUrl":null,"url":null,"abstract":"<div><p>While rapid development and roll out of COVID-19 vaccines is necessary in a pandemic, the process limits the ability of clinical trials to assess longer-term vaccine efficacy. We leveraged COVID-19 surveillance data in the U.S. to evaluate vaccine efficacy in U.S. Government-funded COVID-19 vaccine efficacy trials with a three-step estimation process. First, we used a compartmental epidemiological model informed by county-level surveillance data, a “population model”, to estimate SARS-CoV-2 incidence among the unvaccinated. Second, a “cohort model” was used to adjust the population SARS-CoV-2 incidence to the vaccine trial cohort, taking into account individual participant characteristics and the difference between SARS-CoV-2 infection and COVID-19 disease. Third, we fit a regression model estimating the offset between the cohort-model-based COVID-19 incidence in the unvaccinated with the placebo-group COVID-19 incidence in the trial during blinded follow-up. Counterfactual placebo COVID-19 incidence was estimated during open-label follow-up by adjusting the cohort-model-based incidence rate by the estimated offset. Vaccine efficacy during open-label follow-up was estimated by contrasting the vaccine group COVID-19 incidence with the counterfactual placebo COVID-19 incidence. We documented good performance of the methodology in a simulation study. We also applied the methodology to estimate vaccine efficacy for the two-dose AZD1222 COVID-19 vaccine using data from the phase 3 U.S. trial (ClinicalTrials.gov # NCT04516746). We estimated AZD1222 vaccine efficacy of 59.1% (95% uncertainty interval (UI): 40.4%–74.3%) in April, 2021 (mean 106 days post-second dose), which reduced to 35.7% (95% UI: 15.0%–51.7%) in July, 2021 (mean 198 days post-second-dose). We developed and evaluated a methodology for estimating longer-term vaccine efficacy. This methodology could be applied to estimating counterfactual placebo incidence for future placebo-controlled vaccine efficacy trials of emerging pathogens with early termination of blinded follow-up, to active-controlled or uncontrolled COVID-19 vaccine efficacy trials, and to other clinical endpoints influenced by vaccination.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100768"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S175543652400029X/pdfft?md5=39df9c17d4cc575bab188fe562477835&pid=1-s2.0-S175543652400029X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175543652400029X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
While rapid development and roll out of COVID-19 vaccines is necessary in a pandemic, the process limits the ability of clinical trials to assess longer-term vaccine efficacy. We leveraged COVID-19 surveillance data in the U.S. to evaluate vaccine efficacy in U.S. Government-funded COVID-19 vaccine efficacy trials with a three-step estimation process. First, we used a compartmental epidemiological model informed by county-level surveillance data, a “population model”, to estimate SARS-CoV-2 incidence among the unvaccinated. Second, a “cohort model” was used to adjust the population SARS-CoV-2 incidence to the vaccine trial cohort, taking into account individual participant characteristics and the difference between SARS-CoV-2 infection and COVID-19 disease. Third, we fit a regression model estimating the offset between the cohort-model-based COVID-19 incidence in the unvaccinated with the placebo-group COVID-19 incidence in the trial during blinded follow-up. Counterfactual placebo COVID-19 incidence was estimated during open-label follow-up by adjusting the cohort-model-based incidence rate by the estimated offset. Vaccine efficacy during open-label follow-up was estimated by contrasting the vaccine group COVID-19 incidence with the counterfactual placebo COVID-19 incidence. We documented good performance of the methodology in a simulation study. We also applied the methodology to estimate vaccine efficacy for the two-dose AZD1222 COVID-19 vaccine using data from the phase 3 U.S. trial (ClinicalTrials.gov # NCT04516746). We estimated AZD1222 vaccine efficacy of 59.1% (95% uncertainty interval (UI): 40.4%–74.3%) in April, 2021 (mean 106 days post-second dose), which reduced to 35.7% (95% UI: 15.0%–51.7%) in July, 2021 (mean 198 days post-second-dose). We developed and evaluated a methodology for estimating longer-term vaccine efficacy. This methodology could be applied to estimating counterfactual placebo incidence for future placebo-controlled vaccine efficacy trials of emerging pathogens with early termination of blinded follow-up, to active-controlled or uncontrolled COVID-19 vaccine efficacy trials, and to other clinical endpoints influenced by vaccination.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.