{"title":"Exactly Optimal and Communication-Efficient Private Estimation via Block Designs","authors":"Hyun-Young Park;Seung-Hyun Nam;Si-Hyeon Lee","doi":"10.1109/JSAIT.2024.3381195","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new class of local differential privacy (LDP) schemes based on combinatorial block designs for discrete distribution estimation. This class not only recovers many known LDP schemes in a unified framework of combinatorial block design, but also suggests a novel way of finding new schemes achieving the exactly optimal (or near-optimal) privacy-utility trade-off with lower communication costs. Indeed, we find many new LDP schemes that achieve the exactly optimal privacy-utility trade-off, with the minimum communication cost among all the unbiased or consistent schemes, for a certain set of input data size and LDP constraint. Furthermore, to partially solve the sparse existence issue of block design schemes, we consider a broader class of LDP schemes based on regular and pairwise-balanced designs, called RPBD schemes, which relax one of the symmetry requirements on block designs. By considering this broader class of RPBD schemes, we can find LDP schemes achieving near-optimal privacy-utility trade-off with reasonably low communication costs for a much larger set of input data size and LDP constraint.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"123-134"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10480680/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a new class of local differential privacy (LDP) schemes based on combinatorial block designs for discrete distribution estimation. This class not only recovers many known LDP schemes in a unified framework of combinatorial block design, but also suggests a novel way of finding new schemes achieving the exactly optimal (or near-optimal) privacy-utility trade-off with lower communication costs. Indeed, we find many new LDP schemes that achieve the exactly optimal privacy-utility trade-off, with the minimum communication cost among all the unbiased or consistent schemes, for a certain set of input data size and LDP constraint. Furthermore, to partially solve the sparse existence issue of block design schemes, we consider a broader class of LDP schemes based on regular and pairwise-balanced designs, called RPBD schemes, which relax one of the symmetry requirements on block designs. By considering this broader class of RPBD schemes, we can find LDP schemes achieving near-optimal privacy-utility trade-off with reasonably low communication costs for a much larger set of input data size and LDP constraint.