Evaluate the groundwater quality and human health risks for sustainable drinking and irrigation purposes in mountainous region of Chongqing, Southwest China
Rui Li , Yuting Yan , Jiaqian Xu , Chang Yang , Si Chen , Yangshuang Wang , Yunhui Zhang
{"title":"Evaluate the groundwater quality and human health risks for sustainable drinking and irrigation purposes in mountainous region of Chongqing, Southwest China","authors":"Rui Li , Yuting Yan , Jiaqian Xu , Chang Yang , Si Chen , Yangshuang Wang , Yunhui Zhang","doi":"10.1016/j.jconhyd.2024.104344","DOIUrl":null,"url":null,"abstract":"<div><p>Groundwater is crucial for agriculture and domestic consumption. This research investigated the hydrogeochemical properties and contaminant sources of groundwater within the mountainous terrain of northern Chongqing, with the objective of evaluating its appropriateness for irrigation and potable use. The hydrochemical type of the groundwater was HCO<sub>3</sub> − Ca, dominated by silicate and calcite dissolutions. High NO<sub>3</sub><sup>−</sup> (29.03% exceeds 10 mg/L) were attributed to the overuse of agricultural fertilizers. A comprehensive evaluation was conducted to determine the groundwater suitability for agricultural and potable uses. The results showed that groundwater in the southwestern region, particularly within the Yangtze River mainstem watershed, exhibited less suitability for irrigation owing to its lower mineralization, in contrast to the northeastern region near the Daning River watershed. But this trend is reversed for drinking purposes. Overall, the groundwater was appropriate for both drinking (93.55% were classified as excellent) and irrigation (70.98% were classified as low restriction) purposes in the study area. Deterministic and probabilistic noncarcinogenic health risk analyses centered on nitrate exposure revealed that infants (with 13.79% of samples >1) were at greater risk than children (8.58%), adult males (6.98%), and adult females (5.24%). This underscores the urgency to reduce nitrogen fertilizer usage and improve water management in the region. This research will provide guidance for the sustainable groundwater management in mountainous regions.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000482","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater is crucial for agriculture and domestic consumption. This research investigated the hydrogeochemical properties and contaminant sources of groundwater within the mountainous terrain of northern Chongqing, with the objective of evaluating its appropriateness for irrigation and potable use. The hydrochemical type of the groundwater was HCO3 − Ca, dominated by silicate and calcite dissolutions. High NO3− (29.03% exceeds 10 mg/L) were attributed to the overuse of agricultural fertilizers. A comprehensive evaluation was conducted to determine the groundwater suitability for agricultural and potable uses. The results showed that groundwater in the southwestern region, particularly within the Yangtze River mainstem watershed, exhibited less suitability for irrigation owing to its lower mineralization, in contrast to the northeastern region near the Daning River watershed. But this trend is reversed for drinking purposes. Overall, the groundwater was appropriate for both drinking (93.55% were classified as excellent) and irrigation (70.98% were classified as low restriction) purposes in the study area. Deterministic and probabilistic noncarcinogenic health risk analyses centered on nitrate exposure revealed that infants (with 13.79% of samples >1) were at greater risk than children (8.58%), adult males (6.98%), and adult females (5.24%). This underscores the urgency to reduce nitrogen fertilizer usage and improve water management in the region. This research will provide guidance for the sustainable groundwater management in mountainous regions.