Defect effect on high strain rate compressive behaviors of 3D braided composites

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Damage Mechanics Pub Date : 2024-04-20 DOI:10.1177/10567895241245754
Jinhui Guo, Yousong Xue, Bohong Gu, Baozhong Sun
{"title":"Defect effect on high strain rate compressive behaviors of 3D braided composites","authors":"Jinhui Guo, Yousong Xue, Bohong Gu, Baozhong Sun","doi":"10.1177/10567895241245754","DOIUrl":null,"url":null,"abstract":"Defect effects of carbon fiber composites under dynamic impact conditions are important to mechanical behavior design in the aerospace field. Here we report the defect effect on the impact compressive behavior of 3D braided composites at high strain rates from 550/s to 1240/s. The defect effect on damage behavior was observed by high-speed photography and digital image correlation (DIC) technology. A finite element analysis (FEA) model was developed to show the defect effect on stress distribution and thermo-mechanical behavior. The defect structure reduces the compressive strength of the composite and causes more brittle and catastrophic failure compared with the perfect composite. The defect effect on the compressive behaviors is more significant at higher strain rates. FEA results show that the defect structure causes local stress concentration, high adiabatic temperature rise, and high stress in the X-shaped shear band region, thereby accelerating composite failure.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241245754","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Defect effects of carbon fiber composites under dynamic impact conditions are important to mechanical behavior design in the aerospace field. Here we report the defect effect on the impact compressive behavior of 3D braided composites at high strain rates from 550/s to 1240/s. The defect effect on damage behavior was observed by high-speed photography and digital image correlation (DIC) technology. A finite element analysis (FEA) model was developed to show the defect effect on stress distribution and thermo-mechanical behavior. The defect structure reduces the compressive strength of the composite and causes more brittle and catastrophic failure compared with the perfect composite. The defect effect on the compressive behaviors is more significant at higher strain rates. FEA results show that the defect structure causes local stress concentration, high adiabatic temperature rise, and high stress in the X-shaped shear band region, thereby accelerating composite failure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺陷对三维编织复合材料高应变速率压缩行为的影响
碳纤维复合材料在动态冲击条件下的缺陷效应对航空航天领域的机械性能设计非常重要。在此,我们报告了缺陷对三维编织复合材料在 550/s 至 1240/s 高应变速率下冲击压缩行为的影响。通过高速摄影和数字图像相关(DIC)技术观察了缺陷对损伤行为的影响。建立的有限元分析(FEA)模型显示了缺陷对应力分布和热机械行为的影响。与完美的复合材料相比,缺陷结构降低了复合材料的抗压强度,导致更多的脆性和灾难性破坏。在应变速率较高时,缺陷对抗压行为的影响更为显著。有限元分析结果表明,缺陷结构会导致局部应力集中、绝热温升高以及 X 形剪切带区域的高应力,从而加速复合材料失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Experimental study on the mechanical properties of red sandstone with fractures under different loading rates Experimental analysis of extrusion-based additive manufacturing process of bio-composite NiTi alloy Damage investigation of hybrid flax-glass/epoxy composites subjected to impact fatigue under water ageing A review of multiaxial low-cycle fatigue criteria for life prediction of metals Damage and fracture studies of continuous flax fiber-reinforced composites 3D printed by in-nozzle impregnation additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1