A double‐layer Jacobi method for partial differential equation‐constrained nonlinear model predictive control

Haoyang Deng, Toshiyuki Ohtsuka
{"title":"A double‐layer Jacobi method for partial differential equation‐constrained nonlinear model predictive control","authors":"Haoyang Deng, Toshiyuki Ohtsuka","doi":"10.1002/oca.3132","DOIUrl":null,"url":null,"abstract":"This paper presents a real‐time optimization method for nonlinear model predictive control (NMPC) of systems governed by partial differential equations (PDEs). The NMPC problem to be solved is formulated by discretizing the PDE system in space and time by using the finite difference method. The proposed method is called the double‐layer Jacobi method, which exploits both the spatial and temporal sparsities of the PDE‐constrained NMPC problem. In the upper layer, the NMPC problem is solved by ignoring the temporal couplings of either the state or costate (Lagrange multiplier corresponding to the state equation) equations so that the spatial sparsity is preserved. The lower‐layer Jacobi method is a linear solver dedicated to PDE‐constrained NMPC problems by exploiting the spatial sparsity. Convergence analysis indicates that the convergence of the proposed method is related to the prediction horizon. Results of a numerical experiment of controlling a heat transfer process show that the proposed method can be two orders of magnitude faster than the conventional Newton's method exploiting the banded structure of NMPC problems.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a real‐time optimization method for nonlinear model predictive control (NMPC) of systems governed by partial differential equations (PDEs). The NMPC problem to be solved is formulated by discretizing the PDE system in space and time by using the finite difference method. The proposed method is called the double‐layer Jacobi method, which exploits both the spatial and temporal sparsities of the PDE‐constrained NMPC problem. In the upper layer, the NMPC problem is solved by ignoring the temporal couplings of either the state or costate (Lagrange multiplier corresponding to the state equation) equations so that the spatial sparsity is preserved. The lower‐layer Jacobi method is a linear solver dedicated to PDE‐constrained NMPC problems by exploiting the spatial sparsity. Convergence analysis indicates that the convergence of the proposed method is related to the prediction horizon. Results of a numerical experiment of controlling a heat transfer process show that the proposed method can be two orders of magnitude faster than the conventional Newton's method exploiting the banded structure of NMPC problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偏微分方程约束非线性模型预测控制的双层雅可比方法
本文提出了一种针对偏微分方程(PDE)系统的非线性模型预测控制(NMPC)的实时优化方法。要解决的 NMPC 问题是通过使用有限差分法对 PDE 系统进行空间和时间离散化来实现的。所提出的方法称为双层雅可比法,它利用了 PDE 受限 NMPC 问题的空间和时间稀疏性。在上层,通过忽略状态方程或 costate(对应于状态方程的拉格朗日乘数)方程的时间耦合来求解 NMPC 问题,从而保留了空间稀疏性。下层雅可比方法是一种线性求解器,专门用于利用空间稀疏性求解受 PDE 约束的 NMPC 问题。收敛性分析表明,所提方法的收敛性与预测范围有关。控制传热过程的数值实验结果表明,利用 NMPC 问题的带状结构,所提出的方法比传统的牛顿方法快两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimal demand side management for microgrid cost minimization considering renewables Output feedback control of anti‐linear systems using adaptive dynamic programming Reachable set estimation of delayed Markovian jump neural networks based on an augmented zero equality approach Adaptive neural network dynamic surface optimal saturation control for single‐phase grid‐connected photovoltaic systems Intelligent integration of ANN and H‐infinity control for optimal enhanced performance of a wind generation unit linked to a power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1