{"title":"Identification of earthquake induced structural damage based on synchroextracting transform","authors":"Kumar Roshan, Kumar Gaurav, Zhao Wei, Arvind R. Yadav, Yu Gang, Jayendra Kumar, Evans Amponsah","doi":"10.1007/s11803-024-2249-5","DOIUrl":null,"url":null,"abstract":"<p>Several popular time-frequency techniques, including the Wigner-Ville distribution, smoothed pseudo-Wigner-Ville distribution, wavelet transform, synchrosqueezing transform, Hilbert-Huang transform, and Gabor-Wigner transform, are investigated to determine how well they can identify damage to structures. In this work, a synchroextracting transform (SET) based on the short-time Fourier transform is proposed for estimating post-earthquake structural damage. The performance of SET for artificially generated signals and actual earthquake signals is examined with existing methods. Amongst other tested techniques, SET improves frequency resolution to a great extent by lowering the influence of smearing along the time-frequency plane. Hence, interpretation and readability with the proposed method are improved, and small changes in the time-varying frequency characteristics of the damaged buildings are easily detected through the SET method.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2249-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Several popular time-frequency techniques, including the Wigner-Ville distribution, smoothed pseudo-Wigner-Ville distribution, wavelet transform, synchrosqueezing transform, Hilbert-Huang transform, and Gabor-Wigner transform, are investigated to determine how well they can identify damage to structures. In this work, a synchroextracting transform (SET) based on the short-time Fourier transform is proposed for estimating post-earthquake structural damage. The performance of SET for artificially generated signals and actual earthquake signals is examined with existing methods. Amongst other tested techniques, SET improves frequency resolution to a great extent by lowering the influence of smearing along the time-frequency plane. Hence, interpretation and readability with the proposed method are improved, and small changes in the time-varying frequency characteristics of the damaged buildings are easily detected through the SET method.
期刊介绍:
Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery.
The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.