Polyphenols Modulate the miRNAs Expression that Involved in Glioblastoma

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-04-19 DOI:10.2174/0113895575304605240408105201
Maede Rezaie, Mohammad Nasehi, Mohammad Shimia, Mohamad Ebrahimnezhad, Bahman Yousefi, Maryam Majidinia
{"title":"Polyphenols Modulate the miRNAs Expression that Involved in Glioblastoma","authors":"Maede Rezaie, Mohammad Nasehi, Mohammad Shimia, Mohamad Ebrahimnezhad, Bahman Yousefi, Maryam Majidinia","doi":"10.2174/0113895575304605240408105201","DOIUrl":null,"url":null,"abstract":": Glioblastoma multiforme (GBM), a solid tumor that develops from astrocytes, is one of the most aggressive types of brain cancer. While there have been improvements in the efficacy of treating GBM, many problems remain, especially with traditional therapy methods. Therefore, recent studies have extensively focused on developing novel therapeutic agents for combating glioblastoma. Natural polyphenols have been studied for their potential as chemopreventive and chemotherapeutic agents due to their wide range of positive qualities, including antioxidant, antiinflammatory, cytotoxic, antineoplastic, and immunomodulatory activities. These natural compounds have been suggested to act via modulated various macromolecules within cells, including microRNAs (miRNAs), which play a crucial role in the molecular milieu. In this article, we focus on how polyphenols may inhibit tumor growth by influencing the expression of key miRNAs that regulate oncogenes and tumor suppressor genes","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575304605240408105201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

: Glioblastoma multiforme (GBM), a solid tumor that develops from astrocytes, is one of the most aggressive types of brain cancer. While there have been improvements in the efficacy of treating GBM, many problems remain, especially with traditional therapy methods. Therefore, recent studies have extensively focused on developing novel therapeutic agents for combating glioblastoma. Natural polyphenols have been studied for their potential as chemopreventive and chemotherapeutic agents due to their wide range of positive qualities, including antioxidant, antiinflammatory, cytotoxic, antineoplastic, and immunomodulatory activities. These natural compounds have been suggested to act via modulated various macromolecules within cells, including microRNAs (miRNAs), which play a crucial role in the molecular milieu. In this article, we focus on how polyphenols may inhibit tumor growth by influencing the expression of key miRNAs that regulate oncogenes and tumor suppressor genes
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多酚调节参与胶质母细胞瘤的 miRNAs 表达
:多形性胶质母细胞瘤(GBM)是一种由星形胶质细胞发展而来的实体瘤,是侵袭性最强的脑癌之一。虽然治疗多形性胶质母细胞瘤的疗效有所改善,但仍存在许多问题,尤其是传统治疗方法。因此,最近的研究广泛关注于开发新型治疗药物来对抗胶质母细胞瘤。天然多酚具有抗氧化、抗炎、细胞毒性、抗肿瘤和免疫调节等多种活性,因此被研究用于化学预防和化学治疗。这些天然化合物被认为是通过调节细胞内的各种大分子(包括在分子环境中发挥关键作用的微小核糖核酸(miRNA))而发挥作用的。在本文中,我们将重点讨论多酚如何通过影响调控致癌基因和抑癌基因的关键 miRNA 的表达来抑制肿瘤的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1