De novo assembly-based transcriptome analysis of resistant and susceptible potato varieties to Phytophthora infestans

IF 2.2 4区 农林科学 Q2 PLANT SCIENCES Journal of Plant Pathology Pub Date : 2024-04-18 DOI:10.1007/s42161-024-01636-w
Heba A. Mahfouze, O. E. El-Sayed
{"title":"De novo assembly-based transcriptome analysis of resistant and susceptible potato varieties to Phytophthora infestans","authors":"Heba A. Mahfouze, O. E. El-Sayed","doi":"10.1007/s42161-024-01636-w","DOIUrl":null,"url":null,"abstract":"<p>An effective tool for discovering differentially expressed genes (DEGs) related to late blight (LB) resistance is the transcriptome sequencing of potatoes. The aim of this study was to compare transcriptome expression analysis in incompatible and compatible interactions via high-throughput sequencing. Furthermore, we performed a bioinformatics analysis to screen a large number of specific transcription factors (TFs) and DEGs linked to <i>Phytophthora infestans</i> infection. Two locally cultivated potato varieties were chosen from evaluation assays conducted in two consecutive seasons and based on the disease severity (DS) values. These varieties were the highly resistant Jelly (HR) to <i>P. infestans</i> and the moderately susceptible Annabelle (MS). Ribonucleic acid-sequencing (RNA-seq) was achieved for the two varieties with their controls through the BGISEQ-500 sequencing platform. The RNA-seq analysis identified <i>P. infestans</i>-responsive genes and their expression in potatoes. The mechanism of the response of these cultivars to the <i>P. infestans</i> pathogen by TFs and DEG genes, which play an important role in defense response, was investigated. The Gene Ontology (GO) analysis classified 46,248 unigenes in the HR and 26,921 unigenes in MS into the following three categories: biological process, cellular component, and molecular functions. More genes were responsible for the cellular component category, biological process, and molecular functions in HR compared to MS. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the significantly enriched DEGs were included in the plant–pathogen interaction, biosynthesis of secondary metabolites, and ribosome. In addition, 1874 transcription factor genes belonging to 85 families were indicated in the DEGs, of which MYB and AP2-EREBP genes were the most abundant. Besides, multiple genes related to LB resistance showed differential expression during infection. It also sheds light on the molecular mechanisms behind potato resistance to <i>P. infestans</i> infection.</p>","PeriodicalId":16837,"journal":{"name":"Journal of Plant Pathology","volume":"27 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42161-024-01636-w","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

An effective tool for discovering differentially expressed genes (DEGs) related to late blight (LB) resistance is the transcriptome sequencing of potatoes. The aim of this study was to compare transcriptome expression analysis in incompatible and compatible interactions via high-throughput sequencing. Furthermore, we performed a bioinformatics analysis to screen a large number of specific transcription factors (TFs) and DEGs linked to Phytophthora infestans infection. Two locally cultivated potato varieties were chosen from evaluation assays conducted in two consecutive seasons and based on the disease severity (DS) values. These varieties were the highly resistant Jelly (HR) to P. infestans and the moderately susceptible Annabelle (MS). Ribonucleic acid-sequencing (RNA-seq) was achieved for the two varieties with their controls through the BGISEQ-500 sequencing platform. The RNA-seq analysis identified P. infestans-responsive genes and their expression in potatoes. The mechanism of the response of these cultivars to the P. infestans pathogen by TFs and DEG genes, which play an important role in defense response, was investigated. The Gene Ontology (GO) analysis classified 46,248 unigenes in the HR and 26,921 unigenes in MS into the following three categories: biological process, cellular component, and molecular functions. More genes were responsible for the cellular component category, biological process, and molecular functions in HR compared to MS. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the significantly enriched DEGs were included in the plant–pathogen interaction, biosynthesis of secondary metabolites, and ribosome. In addition, 1874 transcription factor genes belonging to 85 families were indicated in the DEGs, of which MYB and AP2-EREBP genes were the most abundant. Besides, multiple genes related to LB resistance showed differential expression during infection. It also sheds light on the molecular mechanisms behind potato resistance to P. infestans infection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于从头组装的转录组分析马铃薯品种对疫霉菌的抗性和易感性
马铃薯转录组测序是发现与晚疫病(LB)抗性相关的差异表达基因(DEG)的有效工具。本研究的目的是通过高通量测序比较不相容和相容相互作用的转录组表达分析。此外,我们还进行了生物信息学分析,筛选出大量与Phytophthora infestans感染相关的特定转录因子(TFs)和DEGs。根据病害严重程度 (DS) 值,我们从连续两季进行的评估试验中选出了两个当地种植的马铃薯品种。这两个品种分别是对疫霉具有高度抗性的 Jelly (HR) 和中度易感的 Annabelle (MS)。通过 BGISEQ-500 测序平台对这两个品种及其对照进行了核糖核酸测序(RNA-seq)。RNA-seq 分析确定了马铃薯中的虫害响应基因及其表达。研究了在防御反应中起重要作用的 TFs 和 DEG 基因对 P. infestans 病原体的响应机制。基因本体(GO)分析将 HR 中的 46 248 个单体基因和 MS 中的 26 921 个单体基因分为以下三类:生物过程、细胞成分和分子功能。与MS相比,HR中负责细胞成分类别、生物过程和分子功能的基因更多。此外,《京都基因组百科全书》(KEGG)分析表明,显著富集的 DEGs 包括植物与病原体相互作用、次生代谢物的生物合成和核糖体。此外,DEGs中还显示了隶属于85个科的1874个转录因子基因,其中MYB和AP2-EREBP基因最为丰富。此外,多个与 LB 抗性相关的基因在感染过程中出现了差异表达。该研究还揭示了马铃薯抗P. infestans感染的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plant Pathology
Journal of Plant Pathology 生物-植物科学
CiteScore
3.10
自引率
4.50%
发文量
218
审稿时长
6-12 weeks
期刊介绍: The Journal of Plant Pathology (JPP or JPPY) is the main publication of the Italian Society of Plant Pathology (SiPAV), and publishes original contributions in the form of full-length papers, short communications, disease notes, and review articles on mycology, bacteriology, virology, phytoplasmatology, physiological plant pathology, plant-pathogeninteractions, post-harvest diseases, non-infectious diseases, and plant protection. In vivo results are required for plant protection submissions. Varietal trials for disease resistance and gene mapping are not published in the journal unless such findings are already employed in the context of strategic approaches for disease management. However, studies identifying actual genes involved in virulence are pertinent to thescope of the Journal and may be submitted. The journal highlights particularly timely or novel contributions in its Editors’ choice section, to appear at the beginning of each volume. Surveys for diseases or pathogens should be submitted as "Short communications".
期刊最新文献
Phylogenetic placements and phenotypic traits of soft rot bacteria isolated from potato (Solanum tuberosum) in Taiwan Changes in polyphenol oxidase and guaiacol peroxidase enzymes and the expression of pathogenesis-related genes in benzothiadiazole, mycorrhiza-induced or genetic resistance of sunflower plants affected by Sclerotinia sclerotiorum Molecular characteristics of apple dimple fruit viroid isolates from different apple cultivars in Iran Lignification based screening of pea (Pisum sativum L.) germplasm for resistance to rust (Uromyces viciae–fabae) Characterization of mycotoxins produced by two Fusarium species responsible for postharvest rot of banana fruit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1