A. Ya. Kanel-Belov, M. Golafshan, S. G. Malev, R. P. Yavich
{"title":"Finding the Area and Perimeter Distributions for Flat Poisson Processes of a Straight Line and Voronoi Diagrams","authors":"A. Ya. Kanel-Belov, M. Golafshan, S. G. Malev, R. P. Yavich","doi":"10.1134/S1064562424701801","DOIUrl":null,"url":null,"abstract":"<p>The study of distribution functions (with respect to areas, perimeters) for partitioning a plane (space) by a random field of straight lines (hyperplanes) and for obtaining Voronoi diagrams is a classical problem in statistical geometry. Moments for such distributions have been investigated since 1972 [1]. We give a complete solution of these problems for the plane, as well as for Voronoi diagrams. The following problems are solved: 1. A random set of straight lines is given on the plane, all shifts are equiprobable, and the distribution law has the form <span>\\(F(\\varphi ).\\)</span> What is the area (perimeter) distribution of the parts of the partition? 2. A random set of points is marked on the plane. Each point <i>A</i> is associated with a “region of attraction,” which is a set of points on the plane to which <i>A</i> is the closest of the marked set. The idea is to interpret a random polygon as the evolution of a segment on a moving one and construct kinetic equations. It is sufficient to take into account a limited number of parameters: the covered area (perimeter), the length of the segment, and the angles at its ends. We show how to reduce these equations to the Riccati equation using the Laplace transform.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"109 1","pages":"56 - 61"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701801","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The study of distribution functions (with respect to areas, perimeters) for partitioning a plane (space) by a random field of straight lines (hyperplanes) and for obtaining Voronoi diagrams is a classical problem in statistical geometry. Moments for such distributions have been investigated since 1972 [1]. We give a complete solution of these problems for the plane, as well as for Voronoi diagrams. The following problems are solved: 1. A random set of straight lines is given on the plane, all shifts are equiprobable, and the distribution law has the form \(F(\varphi ).\) What is the area (perimeter) distribution of the parts of the partition? 2. A random set of points is marked on the plane. Each point A is associated with a “region of attraction,” which is a set of points on the plane to which A is the closest of the marked set. The idea is to interpret a random polygon as the evolution of a segment on a moving one and construct kinetic equations. It is sufficient to take into account a limited number of parameters: the covered area (perimeter), the length of the segment, and the angles at its ends. We show how to reduce these equations to the Riccati equation using the Laplace transform.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.