{"title":"Nonlinear Variational Inequalities with Bilateral Constraints Coinciding on a Set of Positive Measure","authors":"A. A. Kovalevsky","doi":"10.1134/S1064562424701813","DOIUrl":null,"url":null,"abstract":"<p>We consider variational inequalities with invertible operators <span>\\({{\\mathcal{A}}_{s}}{\\text{:}}~\\,W_{0}^{{1,p}}\\left( {{\\Omega }} \\right) \\to {{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right),\\)</span> <span>\\(s \\in \\mathbb{N},\\)</span> in divergence form and with constraint set <span>\\(V = \\{ {v} \\in W_{0}^{{1,p}}\\left( {{\\Omega }} \\right){\\text{: }}\\varphi \\leqslant {v} \\leqslant \\psi ~\\)</span> a.e. in <span>\\({{\\Omega }}\\} ,\\)</span> where <span>\\({{\\Omega }}\\)</span> is a nonempty bounded open set in <span>\\({{\\mathbb{R}}^{n}}\\)</span> <span>\\(\\left( {n \\geqslant 2} \\right)\\)</span>, <i>p</i> > 1, and <span>\\(\\varphi ,\\psi {{:\\;\\Omega }} \\to \\bar {\\mathbb{R}}\\)</span> are measurable functions. Under the assumptions that the operators <span>\\({{\\mathcal{A}}_{s}}\\)</span> <i>G-</i>converge to an invertible operator <span>\\(\\mathcal{A}{\\text{: }}W_{0}^{{1,p}}\\left( {{\\Omega }} \\right) \\to {{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right)\\)</span>, <span>\\({\\text{int}}\\left\\{ {\\varphi = \\psi } \\right\\} \\ne \\varnothing ,\\)</span> <span>\\({\\text{meas}}\\left( {\\partial \\left\\{ {\\varphi = \\psi } \\right\\} \\cap {{\\Omega }}} \\right)\\)</span> = 0, and there exist functions <span>\\(\\bar {\\varphi },\\bar {\\psi } \\in W_{0}^{{1,p}}\\left( {{\\Omega }} \\right)\\)</span> such that <span>\\(\\varphi \\leqslant \\overline {\\varphi ~} \\leqslant \\bar {\\psi } \\leqslant \\psi \\)</span> a.e. in <span>\\({{\\Omega }}\\)</span> and <span>\\({\\text{meas}}\\left( {\\left\\{ {\\varphi \\ne \\psi } \\right\\}{{\\backslash }}\\left\\{ {\\bar {\\varphi } \\ne \\bar {\\psi }} \\right\\}} \\right) = 0,\\)</span> we establish that the solutions <i>u</i><sub><i>s</i></sub> of the variational inequalities converge weakly in <span>\\(W_{0}^{{1,p}}\\left( {{\\Omega }} \\right)\\)</span> to the solution <i>u</i> of a similar variational inequality with the operator <span>\\(\\mathcal{A}\\)</span> and the constraint set <i>V</i>. The fundamental difference of the considered case from the previously studied one in which <span>\\({\\text{meas}}\\left\\{ {\\varphi = \\psi } \\right\\} = 0\\)</span> is that, in general, the functionals <span>\\({{\\mathcal{A}}_{s}}{{u}_{s}}\\)</span> do not converge to <span>\\(\\mathcal{A}u\\)</span> even weakly in <span>\\({{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right)\\)</span> and the energy integrals <span>\\(\\langle {{\\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\\rangle \\)</span> do not converge to <span>\\(\\langle \\mathcal{A}u,u\\rangle \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider variational inequalities with invertible operators \({{\mathcal{A}}_{s}}{\text{:}}~\,W_{0}^{{1,p}}\left( {{\Omega }} \right) \to {{W}^{{ - 1,p'}}}\left( {{\Omega }} \right),\)\(s \in \mathbb{N},\) in divergence form and with constraint set \(V = \{ {v} \in W_{0}^{{1,p}}\left( {{\Omega }} \right){\text{: }}\varphi \leqslant {v} \leqslant \psi ~\) a.e. in \({{\Omega }}\} ,\) where \({{\Omega }}\) is a nonempty bounded open set in \({{\mathbb{R}}^{n}}\)\(\left( {n \geqslant 2} \right)\), p > 1, and \(\varphi ,\psi {{:\;\Omega }} \to \bar {\mathbb{R}}\) are measurable functions. Under the assumptions that the operators \({{\mathcal{A}}_{s}}\)G-converge to an invertible operator \(\mathcal{A}{\text{: }}W_{0}^{{1,p}}\left( {{\Omega }} \right) \to {{W}^{{ - 1,p'}}}\left( {{\Omega }} \right)\), \({\text{int}}\left\{ {\varphi = \psi } \right\} \ne \varnothing ,\)\({\text{meas}}\left( {\partial \left\{ {\varphi = \psi } \right\} \cap {{\Omega }}} \right)\) = 0, and there exist functions \(\bar {\varphi },\bar {\psi } \in W_{0}^{{1,p}}\left( {{\Omega }} \right)\) such that \(\varphi \leqslant \overline {\varphi ~} \leqslant \bar {\psi } \leqslant \psi \) a.e. in \({{\Omega }}\) and \({\text{meas}}\left( {\left\{ {\varphi \ne \psi } \right\}{{\backslash }}\left\{ {\bar {\varphi } \ne \bar {\psi }} \right\}} \right) = 0,\) we establish that the solutions us of the variational inequalities converge weakly in \(W_{0}^{{1,p}}\left( {{\Omega }} \right)\) to the solution u of a similar variational inequality with the operator \(\mathcal{A}\) and the constraint set V. The fundamental difference of the considered case from the previously studied one in which \({\text{meas}}\left\{ {\varphi = \psi } \right\} = 0\) is that, in general, the functionals \({{\mathcal{A}}_{s}}{{u}_{s}}\) do not converge to \(\mathcal{A}u\) even weakly in \({{W}^{{ - 1,p'}}}\left( {{\Omega }} \right)\) and the energy integrals \(\langle {{\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\rangle \) do not converge to \(\langle \mathcal{A}u,u\rangle \).